Previous |  Up |  Next

Article

Title: Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system (English)
Author: Chiyo, Yutaro
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 2
Year: 2023
Pages: 163-171
Summary lang: English
.
Category: math
.
Summary: This paper deals with a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system. Boundedness, stabilization and blow-up in this system of the fully parabolic and parabolic-elliptic-elliptic versions have already been proved. The purpose of this paper is to derive boundedness and stabilization in the parabolic-parabolic-elliptic version. (English)
Keyword: chemotaxis
Keyword: quasilinear
Keyword: attraction-repulsion
Keyword: stabilization
MSC: 35B40
MSC: 35K59
MSC: 92C17
idZBL: Zbl 07675586
idMR: MR4563028
DOI: 10.5817/AM2023-2-163
.
Date available: 2023-02-22T14:41:19Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151563
.
Reference: [1] Chiyo, Y.: Stabilization for small mass in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with density-dependent sensitivity: repulsion-dominant case.Adv. Math. Sci. Appl. 31 (2) (2022), 327–341. MR 4521442
Reference: [2] Chiyo, Y., Marras, M., Tanaka, Y., Yokota, T.: Blow-up phenomena in a parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with superlinear logistic degradation.Nonlinear Anal. 212 (2021), 14 pp., Paper No. 112550. MR 4299101
Reference: [3] Chiyo, Y., Yokota, T.: Stabilization for small mass in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system with density-dependent sensitivity: balanced case.Matematiche (Catania), to appear.
Reference: [4] Chiyo, Y., Yokota, T.: Boundedness and finite-time blow-up in a quasilinear parabolic-elliptic elliptic attraction-repulsion chemotaxis system.Z. Angew. Math. Phys. 73 (2) (2022), 27 pp., Paper No. 61. MR 4386024, 10.1007/s00033-022-01695-y
Reference: [5] Fujie, K., Suzuki, T.: Global existence and boundedness in a fully parabolic 2D attraction-repulsion system: chemotaxis-dominant case.Adv. Math. Sci. Appl. 28 (2019), 1–9. MR 4416882
Reference: [6] Ishida, S., Yokota, T.: Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity.Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 2112–232. MR 4043690
Reference: [7] Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type.AMS, Providence, 1968.
Reference: [8] Lankeit, J.: Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system.Discrete Contin. Dyn. Syst. Ser. S 13 (2) (2020), 233–255. MR 4043691
Reference: [9] Lankeit, J.: Finite-time blow-up in the three-dimensional fully parabolic attraction-dominated attraction-repulsion chemotaxis system.J. Math. Anal. Appl. 504 (2) (2021), 16 pp., Paper No. 125409. MR 4270582, 10.1016/j.jmaa.2021.125409
Reference: [10] Li, Y., Lin, K., Mu, C.: Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system.Electron. J. Differential Equations 2015 (146) (2015), 13 pp. MR 3358518
Reference: [11] Lin, K., Mu, C., Wang, L.: Large-time behavior of an attraction-repulsion chemotaxis system.J. Math. Anal. Appl. 426 (1) (2015), 105–124. MR 3306365, 10.1016/j.jmaa.2014.12.052
Reference: [12] Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogliner, A.: Chemotactic signalling, microglia, and Alzheimer’s disease senile plague: Is there a connection?.Bull. Math. Biol. 65 (2003), 673–730. 10.1016/S0092-8240(03)00030-2
Reference: [13] Tao, Y., Wang, Z.-A.: Competing effects of attraction vs. repulsion in chemotaxis.Math. Models Methods Appl. Sci. 23 (2013), 1–36. MR 2997466, 10.1142/S0218202512500443
Reference: [14] Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity.J. Differential Equations 252 (1) (2012), 692–715. MR 2852223, 10.1016/j.jde.2011.08.019
Reference: [15] Winkler, M.: Global classical solvability and generic infinite-time blow-up in quasilinear Keller-Segel systems with bounded sensitivities.J. Differential Equations 266 (12) (2019), 8034–8066. MR 3944248, 10.1016/j.jde.2018.12.019
.

Files

Files Size Format View
ArchMathRetro_059-2023-2_3.pdf 438.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo