Previous |  Up |  Next

Article

Title: Weak-strong uniqueness for a class of degenerate parabolic cross-diffusion systems (English)
Author: Laurençot, Philippe
Author: Matioc, Bogdan-Vasile
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 2
Year: 2023
Pages: 201-213
Summary lang: English
.
Category: math
.
Summary: Bounded weak solutions to a particular class of degenerate parabolic cross-diffusion systems are shown to coincide with the unique strong solution determined by the same initial condition on the maximal existence interval of the latter. The proof relies on an estimate established for a relative entropy associated to the system. (English)
Keyword: cross diffusion
Keyword: weak-strong uniqueness
Keyword: relative entropy
MSC: 35A02
MSC: 35K51
MSC: 35K65
MSC: 35Q35
idZBL: Zbl 07675590
idMR: MR4563032
DOI: 10.5817/AM2023-2-201
.
Date available: 2023-02-22T14:47:55Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151567
.
Reference: [1] Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations.Math. Z. 183 (1983), 311–341. Zbl 0497.35049, 10.1007/BF01176474
Reference: [2] Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems.Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), Teubner-Texte Math., vol. 133, Teubner, Stuttgart, 1993, pp. 9–126.
Reference: [3] Bénilan, Ph., Crandall, M.G., Pierre, M.: Solutions of the porous medium equation in ${\mathbb{R}}^ N$ under optimal conditions on initial values.Indiana Univ. Math. J. 33 (1984), 51–87. 10.1512/iumj.1984.33.33003
Reference: [4] Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models.Applied Mathematical Sciences, vol. 183, Springer, New York, 2013. MR 2986590, 10.1007/978-1-4614-5975-0
Reference: [5] Brenier, Y., De Lellis, C., Székelyhidi, Jr., L.: Weak-strong uniqueness for measure-valued solutions.Comm. Math. Phys. 305 (2011), no. 2, 351–361. MR 2805464, 10.1007/s00220-011-1267-0
Reference: [6] Bresch, D., Gisclon, M., Lacroix-Violet, I.: On Navier-Stokes-Korteweg and Euler-Korteweg systems: application to quantum fluids models.Arch. Ration. Mech. Anal. 233 (2019), no. 3, 975–1025. MR 3961293, 10.1007/s00205-019-01373-w
Reference: [7] Brézis, H., Crandall, M.G.: Uniqueness of solutions of the initial-value problem for $u_t- \Delta \varphi (u)=0$.J. Math. Pures Appl. (9) 58 (1979), 153–163.
Reference: [8] Chen, X., Jüngel, A.: Weak-strong uniqueness of renormalized solutions to reaction-cross-diffusion systems.Math. Models Methods Appl. Sci. 29 (2019), no. 2, 237–270. MR 3917403, 10.1142/S0218202519500088
Reference: [9] Christoforou, C., Tzavaras, A.E.: Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity.Arch. Ration. Mech. Anal. 229 (2018), no. 1, 1–52. MR 3799089, 10.1007/s00205-017-1212-2
Reference: [10] Escher, J., Matioc, A.-V., Matioc, B.-V.: Modelling and analysis of the Muskat problem for thin fluid layers.J. Math. Fluid Mech. 14 (2012), 267–277. MR 2925108, 10.1007/s00021-011-0053-2
Reference: [11] Feireisl, E., Jin, B.J., Novotný, A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system.J. Math. Fluid Mech. 14 (2012), no. 4, 717–730. MR 2992037, 10.1007/s00021-011-0091-9
Reference: [12] Feireisl, E., Novotný, A.: Weak-strong uniqueness property for the full Navier-Stokes-Fourier system.Arch. Ration. Mech. Anal. 204 (2012), no. 2, 683–706. MR 2909912, 10.1007/s00205-011-0490-3
Reference: [13] Fischer, J.: Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations.Nonlinear Anal. 159 (2017), 181–207. MR 3659829
Reference: [14] Fischer, J., Hensel, S.: Weak-strong uniqueness for the Navier-Stokes equation for two fluids with surface tension.Arch. Ration. Mech. Anal. 236 (2020), no. 2, 967–1087. MR 4072686, 10.1007/s00205-019-01486-2
Reference: [15] Giesselmann, J., Lattanzio, C., Tzavaras, A.E.: Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics.Arch. Ration. Mech. Anal. 223 (2017), no. 3, 1427–1484. MR 3594360, 10.1007/s00205-016-1063-2
Reference: [16] Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Weak-strong uniqueness for measure-valued solutions of some compressible fluid models.Nonlinearity 28 (2015), no. 11, 3873–3890. MR 3424896, 10.1088/0951-7715/28/11/3873
Reference: [17] Hopf, K.: Weak-strong uniqueness for energy-reaction-diffusion systems.Math. Models Methods Appl. Sci. 32 (2022), 1015–1069. MR 4430363, 10.1142/S0218202522500233
Reference: [18] Huo, X., Jüngel, A., Tzavaras, A.E.: Weak-strong uniqueness for Maxwell-Stefan systems.SIAM J. Math. Anal. 54 (2022), no. 3, 3215–3252. MR 4429417, 10.1137/21M145210X
Reference: [19] Jüngel, A., Portisch, S., Zurek, A.: Nonlocal cross-diffusion systems for multi-species populations and networks.Nonlinear Anal. 219 (2022), Paper No. 112800, 1–26. MR 4379345, 10.1016/j.na.2022.112800
Reference: [20] Laurençot, Ph., Matioc, B.-V.: Bounded weak solutions to a class of degenerate cross-diffusion systems.arXiv: 2201.06479.
Reference: [21] Laurençot, Ph., Matioc, B.-V.: The porous medium equation as a singular limit of the thin film Muskat problem.arXiv:2108.09032, to appear in Asymptot. Anal.
Reference: [22] Laurençot, Ph., Matioc, B.-V.: Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals.Trans. Amer. Math. Soc. 375 (2022), no. 8, 5963–5986. MR 4469243
Reference: [23] Matioc, B.-V., Walker, Ch.: On the principle of linearized stability in interpolation spaces for quasilinear evolution equations.Monatsh. Math. 191 (2020), no. 3, 615–634. MR 4064570, 10.1007/s00605-019-01352-z
Reference: [24] Otto, F.: $L^ 1$-contraction and uniqueness for quasilinear elliptic-parabolic equations.J. Differential Equations 131 (1996), no. 1, 20–38. 10.1006/jdeq.1996.0155
Reference: [25] Pierre, M.: Uniqueness of the solutions of $u_t-\Delta (\phi (u)) = 0$ with initial datum a measure.Nonlinear Anal. 6 (1982), 175–187.
Reference: [26] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators.North-Holland, Amsterdam, 1978. Zbl 0387.46033
Reference: [27] Vázquez, J.L.: The Porous Medium Equation.Clarendon Press, Oxford, 2007. MR 2286292
.

Files

Files Size Format View
ArchMathRetro_059-2023-2_7.pdf 490.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo