Previous |  Up |  Next

Article

Title: Uniform attractors in sup-norm for semi linear parabolic problem and application to the robust stability theory (English)
Author: Kapustyan, Oleksiy
Author: Kapustian, Olena
Author: Stanzytskyi, Oleksandr
Author: Korol, Ihor
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 2
Year: 2023
Pages: 191-200
Summary lang: English
.
Category: math
.
Summary: In this paper we establish the existence of the uniform attractor for a semi linear parabolic problem with bounded non autonomous disturbances in the phase space of continuous functions. We applied obtained results to prove the asymptotic gain property with respect to the global attractor of the undisturbed system. (English)
Keyword: parabolic equations
Keyword: attractor
Keyword: stability
MSC: 26A12
MSC: 34C10
idZBL: Zbl 07675589
idMR: MR4563031
DOI: 10.5817/AM2023-2-191
.
Date available: 2023-02-22T14:45:45Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151566
.
Reference: [1] Asrorov, F., Sobchuk, V., Kurylko, O.: Finding of bounded solutions to linear impulsive systems.East-Europ. J. Enterprise Technol. 6 (4(102)) (2019), 14–20. 10.15587/1729-4061.2019.178635
Reference: [2] Barabash, O., Dakhno, N., Shevchenko, H., Sobchuk, V.: Unmanned aerial vehicles flight trajectory optimisation on the basis of variational enequality algorithm and projection method.Proceeding 2019 IEEE 5th International Conference “Actual Problems of Unmanned Aerial Vehicles Developments” (APUAVD), National Aviation University, Kyiv, Ukraine, 2019, pp. 136–139.
Reference: [3] Chepyzkov, V.V., Vishik, M.I.: Attractors for equations of mathematical physics.vol. 49, AMS Colloquium Publications, 2002. MR 1868930
Reference: [4] Dashkovskiy, S., Feketa, P., Kapustyan, O., Romaniuk, I.: Invariance and stability of global attractors for multi-valued impulsive dynamical systems.J. Math. Anal. Appl. 458 (1) (2018), 193–218. MR 3711900, 10.1016/j.jmaa.2017.09.001
Reference: [5] Dashkovskiy, S., Kapustyan, O., Romaniuk, I.: Global attractors of impulsive parabolic inclusions.Discrete Contin. Dyn. Syst. Ser. B 22 (5) (2017), 1875–1886. MR 3627133
Reference: [6] Dashkovskiy, S., Kapustyan, O., Schmid, J.: A local input-to-state stability result w.r.t. attractors of nonlinear reaction-diffusion equations.Math. Control Signals Systems 32 (3) (2020), 309–326. MR 4149749, 10.1007/s00498-020-00256-w
Reference: [7] Dashkovskiy, S., Mironchenko, A.: Input-to-state stability of infinite-dimensional control systems.Math. Control Signal Systems 25 (2013), 1–35. MR 3022292, 10.1007/s00498-012-0090-2
Reference: [8] Haraux, A., Kirane, M.: Estimation $C^1$ pour des problemes paraboliques semi-lineaires.Ann. Fac. Sci. Toulouse Math. 5 (1983), 265–280. 10.5802/afst.598
Reference: [9] Kapustyan, O.V., Kapustian, O.A., Gorban, N.V., Khomenko, O.V.: Strong global attractor for the three-dimensional Navier-Stokes system of equations in unbounded domain of channel type.J. Automat. Inform. Sci. 47 (11) (2015), 48–59. 10.1615/JAutomatInfScien.v47.i11.40
Reference: [10] Kapustyan, O.V., Kasyanov, P.O., Valero, J.: Structure of the global attractor for weak solutions of a reaction-diffusion equation.Appl. Math. Inform. Sci. 9 (5) (2015), 2257–2264. MR 3358694
Reference: [11] Kichmarenko, O., Stanzhytskyi, O.: Sufficient conditions for the existence of optimal controls for some classes of functional-differential equations.Nonlinear Dyn. Syst. Theory 18 (2) (2018), 196–211. MR 3820833
Reference: [12] Manthey, R., Zausinger, T.: Stochastic equations in $L_{\rho }^2$.Stochastic Rep. 66 (1977), 370–373.
Reference: [13] Mironchenko, A., Prieur, Ch.: Input-to-state stability of infinite-dimensional systems: recent results and open questions.SIAM Rev. 62 (2020), 529–614. MR 4131339, 10.1137/19M1291248
Reference: [14] Mironchenko, A., Wirtz, F.: Characterization of input-to-state stability for infinite-dimensional systems.IEEE Trans. Automat. Control 63 (6) (2018), 1602–1617. MR 3805142, 10.1109/TAC.2017.2756341
Reference: [15] Nakonechnyi, A.G., Mashchenko, S.O., Chikrii, V.K: Motion control under conflict condition.J. Automat. Inform. Sci. 50 (1) (2018), 54–75. MR 3821216, 10.1615/JAutomatInfScien.v50.i1.40
Reference: [16] Nakonechnyi, O.G., Kapustian, O.A., Chikrii, A.O.: Approximate guaranteed mean square estimates of functionals on solutions of parabolic problems with fast oscillating coefficients under nonlinear observations.Cybernet. Systems Anal. 55 (5) (2019), 785–795. MR 4017248, 10.1007/s10559-019-00189-6
Reference: [17] Pazy, A.: Semigroups of linear operators and applications to PDE.Springer-Verlag New York, 1983.
Reference: [18] Pichkur, V.V., Sobchuk, V.V.: Mathematical models and control design of a functionally stable technological process.J. Optim. Differ. Equ. Appl. (JODEA) 21 (1) (2021), 1–11.
Reference: [19] Robinson, J.: Infinite-dimensional dynamical systems. An introduction to dissipative parabolic PDEs and the theory of global attractors.Cambridge University Press, 2001. MR 1881888
Reference: [20] Samoilenko, A.M., Stanzhitskii, A.N.: On the averaging of differential equations on an infinite interval.Differ. Equ. 42 (4) (2006), 505–511. MR 2296521, 10.1134/S0012266106040070
Reference: [21] Schmid, J., Kapustyan, O., Dashkovskiy, S.: Asymptotic gain results for attractors of semilinear systems.Math. Control Relat. Fields 12 (3) (2022), 763–788. MR 4459660, 10.3934/mcrf.2021044
Reference: [22] Sell, G., You, Y.: Dynamics of evolutionary equations.Springer New York, NY, 2000.
Reference: [23] Sontag, E.D.: Smooth stabilization implies coprime factorization.IEEE Trans. Automat. Control 34 (4) (1989), 435–443. 10.1109/9.28018
Reference: [24] Sontag, E.D.: Mathematical control theory. Deterministic finite-dimensional systems.Springer, N.Y., 1998.
Reference: [25] Stanzhitskii, A.M.: Investigation of invariant sets of Itô stochastic systems with the use of Lyapunov functions.Ukrainian Math. J. 53 (2) (2001), 323–327. MR 1833535, 10.1023/A:1010437625118
Reference: [26] Stanzhyts’kyi, O.: Investigation of exponential dichotomy of Ito stochastic systems by using quadratic forms.Ukrainian Math. J. 53 (11) (2001), 1882–1894. 10.1023/A:1015259031308
.

Files

Files Size Format View
ArchMathRetro_059-2023-2_6.pdf 470.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo