Previous |  Up |  Next

Article

Title: Deep learning for gradient flows using the Brezis–Ekeland principle (English)
Author: Carini, Laura
Author: Jensen, Max
Author: Nürnberg, Robert
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 3
Year: 2023
Pages: 249-261
Summary lang: English
.
Category: math
.
Summary: We propose a deep learning method for the numerical solution of partial differential equations that arise as gradient flows. The method relies on the Brezis–Ekeland principle, which naturally defines an objective function to be minimized, and so is ideally suited for a machine learning approach using deep neural networks. We describe our approach in a general framework and illustrate the method with the help of an example implementation for the heat equation in space dimensions two to seven. (English)
Keyword: machine learning
Keyword: deep neural networks
Keyword: gradient flows
Keyword: Brezis–Ekeland principle
Keyword: adversarial networks
Keyword: differential equations
MSC: 35A15
MSC: 35K15
MSC: 68t07
idZBL: Zbl 07675595
idMR: MR4563037
DOI: 10.5817/AM2023-3-249
.
Date available: 2023-02-22T14:52:55Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151573
.

Files

Files Size Format View
ArchMathRetro_059-2023-3_2.pdf 751.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo