Previous |  Up |  Next

Article

Title: An unconditionally stable finite element scheme for anisotropic curve shortening flow (English)
Author: Deckelnick, Klaus
Author: Nürnberg, Robert
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 3
Year: 2023
Pages: 263-274
Summary lang: English
.
Category: math
.
Summary: Based on a recent novel formulation of parametric anisotropic curve shortening flow, we analyse a fully discrete numerical method of this geometric evolution equation. The method uses piecewise linear finite elements in space and a backward Euler approximation in time. We establish existence and uniqueness of a discrete solution, as well as an unconditional stability property. Some numerical computations confirm the theoretical results and demonstrate the practicality of our method. (English)
Keyword: anisotropic curve shortening flow
Keyword: finite element method
Keyword: stability
MSC: 35K15
MSC: 53E10
MSC: 65M12
MSC: 65M60
idZBL: Zbl 07675596
idMR: MR4563038
DOI: 10.5817/AM2023-3-263
.
Date available: 2023-02-22T14:55:22Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151574
.
Reference: [1] Alfaro, M., Garcke, H., Hilhorst, D., Matano, H., Schätzle, R.: Motion by anisotropic mean curvature as sharp interface limit of an inhomogeneous and anisotropic Allen-Cahn equation.Proc. Roy. Soc. Edinburgh Sect. A 140 (4) (2010), 673–706. MR 2672065
Reference: [2] Barrett, J.W., Blowey, J.F.: Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy.Numer. Math. 77 (1) (1997), 1–34. 10.1007/s002110050276
Reference: [3] Barrett, J.W., Garcke, H., Nürnberg, R.: Numerical approximation of anisotropic geometric evolution equations in the plane.IMA J. Numer. Anal. 28 (2) (2008), 292–330. MR 2401200, 10.1093/imanum/drm013
Reference: [4] Barrett, J.W., Garcke, H., Nürnberg, R.: Numerical approximation of gradient flows for closed curves in ${\mathbb{R}}^d$.IMA J. Numer. Anal. 30 (1) (2010), 4–60. MR 2580546, 10.1093/imanum/drp005
Reference: [5] Barrett, J.W., Garcke, H., Nürnberg, R.: The approximation of planar curve evolutions by stable fully implicit finite element schemes that equidistribute.Numer. Methods Partial Differential Equations 27 (1) (2011), 1–30. MR 2743598, 10.1002/num.20637
Reference: [6] Barrett, J.W., Garcke, H., Nürnberg, R.: Stable phase field approximations of anisotropic solidification.IMA J. Numer. Anal. 34 (4) (2014), 1289–1327. MR 3269427, 10.1093/imanum/drt044
Reference: [7] Barrett, J.W., Garcke, H., Nürnberg, R.: Numerical approximation of curve evolutions in Riemannian manifolds.IMA J. Numer. Anal. 40 (3) (2020), 1601–1651. MR 4122486, 10.1093/imanum/drz012
Reference: [8] Barrett, J.W., Garcke, H., Nürnberg, R.: Parametric finite element approximations of curvature driven interface evolutions.Handb. Numer. Anal. (Bonito, A., Nochetto, R.H., eds.), vol. 21, Elsevier, Amsterdam, 2020, pp. 275–423. MR 4378429
Reference: [9] Bellettini, G.: Anisotropic and crystalline mean curvature flow.A sampler of Riemann-Finsler geometry, Math. Sci. Res. Inst. Publ., vol. 50, Cambridge Univ. Press, 2004, pp. 49–82. MR 2132657
Reference: [10] Bellettini, G., Paolini, M.: Anisotropic motion by mean curvature in the context of Finsler geometry.Hokkaido Math. J. 25 (3) (1996), 537–566. Zbl 0873.53011, 10.14492/hokmj/1351516749
Reference: [11] Beneš, M., Mikula, K.: Simulation of anisotropic motion by mean curvature-comparison of phase field and sharp interface approaches.Acta Math. Univ. Comenian. (N.S.) 67 (1) (1998), 17–42.
Reference: [12] Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours.Int. J. Comput. Vis. 22 (1) (1997), 61–79. 10.1023/A:1007979827043
Reference: [13] Clarenz, U., Dziuk, G., Rumpf, M.: On generalized mean curvature flow in surface processing.Geometric Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin, 2003, pp. 217–248. MR 2008341
Reference: [14] Deckelnick, K., Dziuk, G.: On the approximation of the curve shortening flow.Calculus of Variations, Applications and Computations (Pont-à-Mousson, 1994) (Bandle, C., Bemelmans, J., Chipot, M., Paulin, J.S.J., Shafrir, I., eds.), Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow, 1995, pp. 100–108.
Reference: [15] Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow.Acta Numer. 14 (2005), 139–232. Zbl 1113.65097, MR 2168343, 10.1017/S0962492904000224
Reference: [16] Deckelnick, K., Nürnberg, R.: A novel finite element approximation of anisotropic curve shortening flow.arXiv:2110.04605 (2021).
Reference: [17] Deimling, K.: Nonlinear functional analysis.Springer-Verlag, Berlin, 1985.
Reference: [18] Dziuk, G.: Convergence of a semi-discrete scheme for the curve shortening flow.Math. Models Methods Appl. Sci. 4 (4) (1994), 589–606. 10.1142/S0218202594000339
Reference: [19] Dziuk, G.: Discrete anisotropic curve shortening flow.SIAM J. Numer. Anal. 36 (6) (1999), 1808–1830. Zbl 0942.65112, 10.1137/S0036142998337533
Reference: [20] Ecker, K.: Regularity Theory for Mean Curvature Flow.Birkhäuser, Boston, 2004. Zbl 1058.53054, MR 2024995
Reference: [21] Elliott, C.M., Fritz, H.: On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick.IMA J. Numer. Anal. 37 (2) (2017), 543–603. MR 3649420
Reference: [22] Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations.SIAM J. Numer. Anal. 30 (6) (1993), 1622–1663. 10.1137/0730084
Reference: [23] Garcke, H., Lam, K.F., Nürnberg, R., Signori, A.: Overhang penalization in additive manufacturing via phase field structural topology optimization with anisotropic energies.arXiv:2111.14070 (2021).
Reference: [24] Giga, Y.: Surface evolution equations.vol. 99, Birkhäuser, Basel, 2006. MR 2238463
Reference: [25] Gurtin, M.E.: Thermomechanics of Evolving Phase Boundaries in the Plane.Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1993. Zbl 0787.73004
Reference: [26] Haußer, F., Voigt, A.: A numerical scheme for regularized anisotropic curve shortening flow.Appl. Math. Lett. 19 (8) (2006), 691–698. MR 2232241, 10.1016/j.aml.2005.05.011
Reference: [27] Mantegazza, C.: Lecture notes on mean curvature flow.Progress in Mathematics, vol. 290, Birkhäuser/Springer Basel AG, Basel, 2011. MR 2815949
Reference: [28] Mikula, K., Ševčovič, D.: Evolution of plane curves driven by a nonlinear function of curvature and anisotropy.SIAM J. Appl. Math. 61 (5) (2001), 1473–1501. MR 1824511, 10.1137/S0036139999359288
Reference: [29] Mikula, K., Ševčovič, D.: A direct method for solving an anisotropic mean curvature flow of plane curves with an external force.Math. Methods Appl. Sci. 27 (13) (2004), 1545–1565. MR 2077443, 10.1002/mma.514
Reference: [30] Mikula, K., Ševčovič, D.: Computational and qualitative aspects of evolution of curves driven by curvature and external force.Computing Vis. Sci. 6 (4) (2004), 21–225. MR 2071441, 10.1007/s00791-004-0131-6
Reference: [31] Pozzi, P.: Anisotropic curve shortening flow in higher codimension.Math. Methods Appl. Sci. 30 (11) (2007), 1243–1281. MR 2334978, 10.1002/mma.836
Reference: [32] Taylor, J.E., Cahn, J.W., Handwerker, C.A.: Geometric models of crystal growth.Acta Metall. Mater. 40 (7) (1992), 1443–1474. 10.1016/0956-7151(92)90090-2
Reference: [33] Wu, C., Tai, X.: A level set formulation of geodesic curvature flow on simplicial surfaces.IEEE Trans. Vis. Comput. Graph. 16 (4) (2010), 647–662. 10.1109/TVCG.2009.103
.

Files

Files Size Format View
ArchMathRetro_059-2023-3_3.pdf 728.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo