Previous |  Up |  Next


hypoplasticity; rate-independent dynamic system; cyclic behavior; hysteresis; ratcheting; attractor; implicit ODE; closed-form solution; numerical simulation
A long-time dynamic for granular materials arising in the hypoplastic theory of Kolymbas type is investigated. It is assumed that the granular hardness allows exponential degradation, which leads to the densification of material states. The governing system for a rate-independent strain under stress control is described by implicit differential equations. Its analytical solution for arbitrary inhomogeneous coefficients is constructed in closed form. Under cyclic loading by periodic pressure, finite ratcheting for the void ratio is derived in explicit form, which converges to a limiting periodic process (attractor) when the number of cycles tends to infinity.
[1] Annin, B.D., Kovtunenko, V.A., Sadovskii, V.M.: Variational and hemivariational inequalities in mechanics of elastoplastic, granular media, and quasibrittle cracks. Analysis, Modelling, Optimization, and Numerical Techniques (Tost, G.O., Vasilieva, O., eds.), vol. 121, Springer Proc. Math. Stat., 2015, pp. 49–56. MR 3354167
[2] Armstrong, P.J., Frederick, C.O.: A mathematical representation of the multiaxial Bauschinger effect. C.E.G.B. Report RD/B/N, 1966.
[3] Bauer, E.: Calibration of a comprehensive hypoplastic model for granular materials. Soils Found. 36 (1996), 13–26. DOI 10.3208/sandf.36.13
[4] Bauer, E.: Analysis of shear band bifurcation with a hypoplastic model for a pressure and density sensitive granular material. Mech. Mater. 31 (1999), 597–609. DOI 10.1016/S0167-6636(99)00017-4
[5] Bauer, E.: Long-term behavior of coarse-grained rockfill material and their constitutive modeling. Dam Engineering - Recent Advances in Design and Analysis (Fu, Z., Bauer, E., eds.), IntechOpen, 2021.
[6] Bauer, E., Kovtunenko, V.A., Krejčí, P., Krenn, N., Siváková, L., Zubkova, A.V.: Modified model for proportional loading and unloading of hypoplastic materials. Extended Abstracts Spring 2018. Singularly Perturbed Systems, Multiscale Phenomena and Hysteresis: Theory and Applications (Korobeinikov, A., Caubergh, M., Lázaro, T., Sardanyés, J., eds.), Trends in Mathematics, vol. 11, Birkhäuser, Hamburk, 2019, pp. 201–210. MR 4094363
[7] Bauer, E., Kovtunenko, V.A., Krejčí, P., Krenn, N., Siváková, L., Zubkova, A.V.: On proportional deformation paths in hypoplasticity. Acta Mechanica 231 (2020), 1603–1619. DOI 10.1007/s00707-019-02597-3 | MR 4078331
[8] Brokate, M., Krejčí, P.: Wellposedness of kinematic hardening models in elastoplasticity. RAIRO Modél. Math. Anal. Numér. 32 (1998), 177–209. DOI 10.1051/m2an/1998320201771
[9] Chambon, R., Desrues, J., Hammad, W., Charlier, R.: CLoE, a new rate-type constitutive model for geomaterials, theoretical basis and implementation. Int. J. Num. Anal. Methods Geomech. 18 (1994), 253–278. DOI 10.1002/nag.1610180404
[10] Darve, F.: Incrementally non-linear constitutive relationships. Geomaterials, Constitutive Equations and Modelling (Darve, F., ed.), Elsevier, Horton, Greece, 1990, pp. 213–238.
[11] Fellner, K., Kovtunenko, V.A.: A singularly perturbed nonlinear Poisson–Boltzmann equation: uniform and super-asymptotic expansions. Math. Methods Appl. Sci. 38 (2015), 3575–3586. DOI 10.1002/mma.3593 | MR 3423716
[12] Fellner, K., Kovtunenko, V.A.: A discontinuous Poisson–Boltzmann equation with interfacial transfer: homogenisation and residual error estimate. Appl. Anal. 95 (2016), 2661–2682. DOI 10.1080/00036811.2015.1105962 | MR 3552311
[13] González Granada, J.R., Kovtunenko, V.A.: Entropy method for generalized Poisson–Nernst–Planck equations. Anal. Math. Phys. 8 (2018), 603–619. DOI 10.1007/s13324-018-0257-1 | MR 3881016
[14] Gudehus, G.: A comprehensive constitutive equation for granular materials. Soils Found. 36 (1996), 1–12. DOI 10.3208/sandf.36.1
[15] Hron, J., Málek, J., Rajagopal, K.R.: Simple flows of fluids with pressure dependent viscosities. Proc. Roy. Soc. A 457 (2001), 1603–1622.
[16] Khludnev, A.M., Kovtunenko, V.A.: Analysis of Cracks in Solids. WIT-Press, Southampton, Boston, 2000.
[17] Kolymbas, D.: Introduction to Hypoplasticity. A.A. Balkema, Rotterdam, 2000.
[18] Kolymbas, D., Medicus, G.: Genealogy of hypoplasticity and barodesy. Int. J. Numer. Anal. Methods Geomech. 40 (2016), 2530–2550.
[19] Kovtunenko, V.A., Bauer, E., Eliaš, J., Krejčí, P., Monteiro, G.A., Straková (Siváková), L.: Cyclic behavior of simple models in hypoplasticity and plasticity with nonlinear kinematic hardening. J. Sib. Fed. Univ. - Math. Phys. 14 (2021), 756–767. DOI 10.17516/1997-1397-2021-14-6-756-767
[20] Kovtunenko, V.A., Krejčí, P., Bauer, E., Siváková, L., Zubkova, A.V.: On Lyapunov stability in hypoplasticity. Proc. Equadiff 2017 Conference (Mikula, K., Ševčovič, D., Urbán, J., eds.), Slovak University of Technology, Bratislava, 2017, pp. 107–116. MR 3624096
[21] Kovtunenko, V.A., Krejčí, P., Krenn, N., Bauer, E., Siváková, L., Zubkova, A.V.: On feasibility of rate-independent stress paths under proportional deformations within hypoplastic constitutive model for granular materials. Math. Models Eng. 5 (2019), 119–126. DOI 10.21595/mme.2019.21220 | MR 4203411
[22] Kovtunenko, V.A., Zubkova, A.V.: Mathematical modeling of a discontinuous solution of the generalized Poisson–Nernst–Planck problem in a two-phase medium. Kinet. Relat. Models 11 (2018), 119–135. DOI 10.3934/krm.2018007 | MR 3708185
[23] Kovtunenko, V.A., Zubkova, A.V.: Homogenization of the generalized Poisson–Nernst–Planck problem in a two-phase medium: correctors and estimates. Appl. Anal. 100 (2021 a), 253–274. DOI 10.1080/00036811.2019.1600676 | MR 4203411
[24] Kovtunenko, V.A., Zubkova, A.V.: Existence and two-scale convergence of the generalised Poisson–Nernst–Planck problem with non-linear interface conditions. Eur. J. Appl. Math. 32 (2021 b), 683–710. DOI 10.1017/S095679252000025X | MR 4283034
[25] Krejčí, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakkotosho, Tokyo, 1996.
[26] Mašín, D.: Modelling of Soil Behaviour with Hypoplasticity: Another Approach to Soil Constitutive Modelling. Springer Nature, Switzerland, 2019.
[27] Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohes.-Frict. Mat. 2 (1997), 279–299. DOI 10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8
[28] Rajagopal, K.R., Srinivasa, A.R.: On a class of non-dissipative materials that are not hyperelastic. Proc. Roy. Soc. A 465 (2009), 493–500. MR 2471770
[29] Truesdell, C.: Remarks on hypo-elasticity. J. Res. Natl. Bur. Stand. B 67B (1963), 141–143. DOI 10.6028/jres.067B.011
[30] Valanis, K.C.: A theory of viscoplasticity without a yield surface. Arch. Mech. 23 (1971), 517–533.
Partner of
EuDML logo