Title:
|
Stress-controlled hysteresis and long-time dynamics of implicit differential equations arising in hypoplasticity (English) |
Author:
|
Kovtunenko, Victor A. |
Author:
|
Eliaš, Ján |
Author:
|
Krejčí, Pavel |
Author:
|
Monteiro, Giselle A. |
Author:
|
Runcziková, Judita |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
59 |
Issue:
|
3 |
Year:
|
2023 |
Pages:
|
275-286 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A long-time dynamic for granular materials arising in the hypoplastic theory of Kolymbas type is investigated. It is assumed that the granular hardness allows exponential degradation, which leads to the densification of material states. The governing system for a rate-independent strain under stress control is described by implicit differential equations. Its analytical solution for arbitrary inhomogeneous coefficients is constructed in closed form. Under cyclic loading by periodic pressure, finite ratcheting for the void ratio is derived in explicit form, which converges to a limiting periodic process (attractor) when the number of cycles tends to infinity. (English) |
Keyword:
|
hypoplasticity |
Keyword:
|
rate-independent dynamic system |
Keyword:
|
cyclic behavior |
Keyword:
|
hysteresis |
Keyword:
|
ratcheting |
Keyword:
|
attractor |
Keyword:
|
implicit ODE |
Keyword:
|
closed-form solution |
Keyword:
|
numerical simulation |
MSC:
|
34C55 |
MSC:
|
37N15 |
MSC:
|
74C15 |
MSC:
|
74L10 |
idZBL:
|
Zbl 07675597 |
idMR:
|
MR4563039 |
DOI:
|
10.5817/AM2023-3-275 |
. |
Date available:
|
2023-02-22T14:57:39Z |
Last updated:
|
2023-05-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151575 |
. |
Reference:
|
[1] Annin, B.D., Kovtunenko, V.A., Sadovskii, V.M.: Variational and hemivariational inequalities in mechanics of elastoplastic, granular media, and quasibrittle cracks.Analysis, Modelling, Optimization, and Numerical Techniques (Tost, G.O., Vasilieva, O., eds.), vol. 121, Springer Proc. Math. Stat., 2015, pp. 49–56. MR 3354167 |
Reference:
|
[2] Armstrong, P.J., Frederick, C.O.: A mathematical representation of the multiaxial Bauschinger effect.C.E.G.B. Report RD/B/N, 1966. |
Reference:
|
[3] Bauer, E.: Calibration of a comprehensive hypoplastic model for granular materials.Soils Found. 36 (1996), 13–26. 10.3208/sandf.36.13 |
Reference:
|
[4] Bauer, E.: Analysis of shear band bifurcation with a hypoplastic model for a pressure and density sensitive granular material.Mech. Mater. 31 (1999), 597–609. 10.1016/S0167-6636(99)00017-4 |
Reference:
|
[5] Bauer, E.: Long-term behavior of coarse-grained rockfill material and their constitutive modeling.Dam Engineering - Recent Advances in Design and Analysis (Fu, Z., Bauer, E., eds.), IntechOpen, 2021. |
Reference:
|
[6] Bauer, E., Kovtunenko, V.A., Krejčí, P., Krenn, N., Siváková, L., Zubkova, A.V.: Modified model for proportional loading and unloading of hypoplastic materials.Extended Abstracts Spring 2018. Singularly Perturbed Systems, Multiscale Phenomena and Hysteresis: Theory and Applications (Korobeinikov, A., Caubergh, M., Lázaro, T., Sardanyés, J., eds.), Trends in Mathematics, vol. 11, Birkhäuser, Hamburk, 2019, pp. 201–210. MR 4094363 |
Reference:
|
[7] Bauer, E., Kovtunenko, V.A., Krejčí, P., Krenn, N., Siváková, L., Zubkova, A.V.: On proportional deformation paths in hypoplasticity.Acta Mechanica 231 (2020), 1603–1619. MR 4078331, 10.1007/s00707-019-02597-3 |
Reference:
|
[8] Brokate, M., Krejčí, P.: Wellposedness of kinematic hardening models in elastoplasticity.RAIRO Modél. Math. Anal. Numér. 32 (1998), 177–209. 10.1051/m2an/1998320201771 |
Reference:
|
[9] Chambon, R., Desrues, J., Hammad, W., Charlier, R.: CLoE, a new rate-type constitutive model for geomaterials, theoretical basis and implementation.Int. J. Num. Anal. Methods Geomech. 18 (1994), 253–278. 10.1002/nag.1610180404 |
Reference:
|
[10] Darve, F.: Incrementally non-linear constitutive relationships.Geomaterials, Constitutive Equations and Modelling (Darve, F., ed.), Elsevier, Horton, Greece, 1990, pp. 213–238. |
Reference:
|
[11] Fellner, K., Kovtunenko, V.A.: A singularly perturbed nonlinear Poisson–Boltzmann equation: uniform and super-asymptotic expansions.Math. Methods Appl. Sci. 38 (2015), 3575–3586. MR 3423716, 10.1002/mma.3593 |
Reference:
|
[12] Fellner, K., Kovtunenko, V.A.: A discontinuous Poisson–Boltzmann equation with interfacial transfer: homogenisation and residual error estimate.Appl. Anal. 95 (2016), 2661–2682. MR 3552311, 10.1080/00036811.2015.1105962 |
Reference:
|
[13] González Granada, J.R., Kovtunenko, V.A.: Entropy method for generalized Poisson–Nernst–Planck equations.Anal. Math. Phys. 8 (2018), 603–619. MR 3881016, 10.1007/s13324-018-0257-1 |
Reference:
|
[14] Gudehus, G.: A comprehensive constitutive equation for granular materials.Soils Found. 36 (1996), 1–12. 10.3208/sandf.36.1 |
Reference:
|
[15] Hron, J., Málek, J., Rajagopal, K.R.: Simple flows of fluids with pressure dependent viscosities.Proc. Roy. Soc. A 457 (2001), 1603–1622. |
Reference:
|
[16] Khludnev, A.M., Kovtunenko, V.A.: Analysis of Cracks in Solids.WIT-Press, Southampton, Boston, 2000. |
Reference:
|
[17] Kolymbas, D.: Introduction to Hypoplasticity.A.A. Balkema, Rotterdam, 2000. |
Reference:
|
[18] Kolymbas, D., Medicus, G.: Genealogy of hypoplasticity and barodesy.Int. J. Numer. Anal. Methods Geomech. 40 (2016), 2530–2550. |
Reference:
|
[19] Kovtunenko, V.A., Bauer, E., Eliaš, J., Krejčí, P., Monteiro, G.A., Straková (Siváková), L.: Cyclic behavior of simple models in hypoplasticity and plasticity with nonlinear kinematic hardening.J. Sib. Fed. Univ. - Math. Phys. 14 (2021), 756–767. 10.17516/1997-1397-2021-14-6-756-767 |
Reference:
|
[20] Kovtunenko, V.A., Krejčí, P., Bauer, E., Siváková, L., Zubkova, A.V.: On Lyapunov stability in hypoplasticity.Proc. Equadiff 2017 Conference (Mikula, K., Ševčovič, D., Urbán, J., eds.), Slovak University of Technology, Bratislava, 2017, pp. 107–116. MR 3624096 |
Reference:
|
[21] Kovtunenko, V.A., Krejčí, P., Krenn, N., Bauer, E., Siváková, L., Zubkova, A.V.: On feasibility of rate-independent stress paths under proportional deformations within hypoplastic constitutive model for granular materials.Math. Models Eng. 5 (2019), 119–126. MR 4203411, 10.21595/mme.2019.21220 |
Reference:
|
[22] Kovtunenko, V.A., Zubkova, A.V.: Mathematical modeling of a discontinuous solution of the generalized Poisson–Nernst–Planck problem in a two-phase medium.Kinet. Relat. Models 11 (2018), 119–135. MR 3708185, 10.3934/krm.2018007 |
Reference:
|
[23] Kovtunenko, V.A., Zubkova, A.V.: Homogenization of the generalized Poisson–Nernst–Planck problem in a two-phase medium: correctors and estimates.Appl. Anal. 100 (2021 a), 253–274. MR 4203411, 10.1080/00036811.2019.1600676 |
Reference:
|
[24] Kovtunenko, V.A., Zubkova, A.V.: Existence and two-scale convergence of the generalised Poisson–Nernst–Planck problem with non-linear interface conditions.Eur. J. Appl. Math. 32 (2021 b), 683–710. MR 4283034, 10.1017/S095679252000025X |
Reference:
|
[25] Krejčí, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations.Gakkotosho, Tokyo, 1996. |
Reference:
|
[26] Mašín, D.: Modelling of Soil Behaviour with Hypoplasticity: Another Approach to Soil Constitutive Modelling.Springer Nature, Switzerland, 2019. |
Reference:
|
[27] Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range.Mech. Cohes.-Frict. Mat. 2 (1997), 279–299. 10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8 |
Reference:
|
[28] Rajagopal, K.R., Srinivasa, A.R.: On a class of non-dissipative materials that are not hyperelastic.Proc. Roy. Soc. A 465 (2009), 493–500. MR 2471770 |
Reference:
|
[29] Truesdell, C.: Remarks on hypo-elasticity.J. Res. Natl. Bur. Stand. B 67B (1963), 141–143. 10.6028/jres.067B.011 |
Reference:
|
[30] Valanis, K.C.: A theory of viscoplasticity without a yield surface.Arch. Mech. 23 (1971), 517–533. |
. |