Previous |  Up |  Next

Article

Title: Stress-controlled hysteresis and long-time dynamics of implicit differential equations arising in hypoplasticity (English)
Author: Kovtunenko, Victor A.
Author: Eliaš, Ján
Author: Krejčí, Pavel
Author: Monteiro, Giselle A.
Author: Runcziková, Judita
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 3
Year: 2023
Pages: 275-286
Summary lang: English
.
Category: math
.
Summary: A long-time dynamic for granular materials arising in the hypoplastic theory of Kolymbas type is investigated. It is assumed that the granular hardness allows exponential degradation, which leads to the densification of material states. The governing system for a rate-independent strain under stress control is described by implicit differential equations. Its analytical solution for arbitrary inhomogeneous coefficients is constructed in closed form. Under cyclic loading by periodic pressure, finite ratcheting for the void ratio is derived in explicit form, which converges to a limiting periodic process (attractor) when the number of cycles tends to infinity. (English)
Keyword: hypoplasticity
Keyword: rate-independent dynamic system
Keyword: cyclic behavior
Keyword: hysteresis
Keyword: ratcheting
Keyword: attractor
Keyword: implicit ODE
Keyword: closed-form solution
Keyword: numerical simulation
MSC: 34C55
MSC: 37N15
MSC: 74C15
MSC: 74L10
idZBL: Zbl 07675597
idMR: MR4563039
DOI: 10.5817/AM2023-3-275
.
Date available: 2023-02-22T14:57:39Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151575
.
Reference: [1] Annin, B.D., Kovtunenko, V.A., Sadovskii, V.M.: Variational and hemivariational inequalities in mechanics of elastoplastic, granular media, and quasibrittle cracks.Analysis, Modelling, Optimization, and Numerical Techniques (Tost, G.O., Vasilieva, O., eds.), vol. 121, Springer Proc. Math. Stat., 2015, pp. 49–56. MR 3354167
Reference: [2] Armstrong, P.J., Frederick, C.O.: A mathematical representation of the multiaxial Bauschinger effect.C.E.G.B. Report RD/B/N, 1966.
Reference: [3] Bauer, E.: Calibration of a comprehensive hypoplastic model for granular materials.Soils Found. 36 (1996), 13–26. 10.3208/sandf.36.13
Reference: [4] Bauer, E.: Analysis of shear band bifurcation with a hypoplastic model for a pressure and density sensitive granular material.Mech. Mater. 31 (1999), 597–609. 10.1016/S0167-6636(99)00017-4
Reference: [5] Bauer, E.: Long-term behavior of coarse-grained rockfill material and their constitutive modeling.Dam Engineering - Recent Advances in Design and Analysis (Fu, Z., Bauer, E., eds.), IntechOpen, 2021.
Reference: [6] Bauer, E., Kovtunenko, V.A., Krejčí, P., Krenn, N., Siváková, L., Zubkova, A.V.: Modified model for proportional loading and unloading of hypoplastic materials.Extended Abstracts Spring 2018. Singularly Perturbed Systems, Multiscale Phenomena and Hysteresis: Theory and Applications (Korobeinikov, A., Caubergh, M., Lázaro, T., Sardanyés, J., eds.), Trends in Mathematics, vol. 11, Birkhäuser, Hamburk, 2019, pp. 201–210. MR 4094363
Reference: [7] Bauer, E., Kovtunenko, V.A., Krejčí, P., Krenn, N., Siváková, L., Zubkova, A.V.: On proportional deformation paths in hypoplasticity.Acta Mechanica 231 (2020), 1603–1619. MR 4078331, 10.1007/s00707-019-02597-3
Reference: [8] Brokate, M., Krejčí, P.: Wellposedness of kinematic hardening models in elastoplasticity.RAIRO Modél. Math. Anal. Numér. 32 (1998), 177–209. 10.1051/m2an/1998320201771
Reference: [9] Chambon, R., Desrues, J., Hammad, W., Charlier, R.: CLoE, a new rate-type constitutive model for geomaterials, theoretical basis and implementation.Int. J. Num. Anal. Methods Geomech. 18 (1994), 253–278. 10.1002/nag.1610180404
Reference: [10] Darve, F.: Incrementally non-linear constitutive relationships.Geomaterials, Constitutive Equations and Modelling (Darve, F., ed.), Elsevier, Horton, Greece, 1990, pp. 213–238.
Reference: [11] Fellner, K., Kovtunenko, V.A.: A singularly perturbed nonlinear Poisson–Boltzmann equation: uniform and super-asymptotic expansions.Math. Methods Appl. Sci. 38 (2015), 3575–3586. MR 3423716, 10.1002/mma.3593
Reference: [12] Fellner, K., Kovtunenko, V.A.: A discontinuous Poisson–Boltzmann equation with interfacial transfer: homogenisation and residual error estimate.Appl. Anal. 95 (2016), 2661–2682. MR 3552311, 10.1080/00036811.2015.1105962
Reference: [13] González Granada, J.R., Kovtunenko, V.A.: Entropy method for generalized Poisson–Nernst–Planck equations.Anal. Math. Phys. 8 (2018), 603–619. MR 3881016, 10.1007/s13324-018-0257-1
Reference: [14] Gudehus, G.: A comprehensive constitutive equation for granular materials.Soils Found. 36 (1996), 1–12. 10.3208/sandf.36.1
Reference: [15] Hron, J., Málek, J., Rajagopal, K.R.: Simple flows of fluids with pressure dependent viscosities.Proc. Roy. Soc. A 457 (2001), 1603–1622.
Reference: [16] Khludnev, A.M., Kovtunenko, V.A.: Analysis of Cracks in Solids.WIT-Press, Southampton, Boston, 2000.
Reference: [17] Kolymbas, D.: Introduction to Hypoplasticity.A.A. Balkema, Rotterdam, 2000.
Reference: [18] Kolymbas, D., Medicus, G.: Genealogy of hypoplasticity and barodesy.Int. J. Numer. Anal. Methods Geomech. 40 (2016), 2530–2550.
Reference: [19] Kovtunenko, V.A., Bauer, E., Eliaš, J., Krejčí, P., Monteiro, G.A., Straková (Siváková), L.: Cyclic behavior of simple models in hypoplasticity and plasticity with nonlinear kinematic hardening.J. Sib. Fed. Univ. - Math. Phys. 14 (2021), 756–767. 10.17516/1997-1397-2021-14-6-756-767
Reference: [20] Kovtunenko, V.A., Krejčí, P., Bauer, E., Siváková, L., Zubkova, A.V.: On Lyapunov stability in hypoplasticity.Proc. Equadiff 2017 Conference (Mikula, K., Ševčovič, D., Urbán, J., eds.), Slovak University of Technology, Bratislava, 2017, pp. 107–116. MR 3624096
Reference: [21] Kovtunenko, V.A., Krejčí, P., Krenn, N., Bauer, E., Siváková, L., Zubkova, A.V.: On feasibility of rate-independent stress paths under proportional deformations within hypoplastic constitutive model for granular materials.Math. Models Eng. 5 (2019), 119–126. MR 4203411, 10.21595/mme.2019.21220
Reference: [22] Kovtunenko, V.A., Zubkova, A.V.: Mathematical modeling of a discontinuous solution of the generalized Poisson–Nernst–Planck problem in a two-phase medium.Kinet. Relat. Models 11 (2018), 119–135. MR 3708185, 10.3934/krm.2018007
Reference: [23] Kovtunenko, V.A., Zubkova, A.V.: Homogenization of the generalized Poisson–Nernst–Planck problem in a two-phase medium: correctors and estimates.Appl. Anal. 100 (2021 a), 253–274. MR 4203411, 10.1080/00036811.2019.1600676
Reference: [24] Kovtunenko, V.A., Zubkova, A.V.: Existence and two-scale convergence of the generalised Poisson–Nernst–Planck problem with non-linear interface conditions.Eur. J. Appl. Math. 32 (2021 b), 683–710. MR 4283034, 10.1017/S095679252000025X
Reference: [25] Krejčí, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations.Gakkotosho, Tokyo, 1996.
Reference: [26] Mašín, D.: Modelling of Soil Behaviour with Hypoplasticity: Another Approach to Soil Constitutive Modelling.Springer Nature, Switzerland, 2019.
Reference: [27] Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range.Mech. Cohes.-Frict. Mat. 2 (1997), 279–299. 10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8
Reference: [28] Rajagopal, K.R., Srinivasa, A.R.: On a class of non-dissipative materials that are not hyperelastic.Proc. Roy. Soc. A 465 (2009), 493–500. MR 2471770
Reference: [29] Truesdell, C.: Remarks on hypo-elasticity.J. Res. Natl. Bur. Stand. B 67B (1963), 141–143. 10.6028/jres.067B.011
Reference: [30] Valanis, K.C.: A theory of viscoplasticity without a yield surface.Arch. Mech. 23 (1971), 517–533.
.

Files

Files Size Format View
ArchMathRetro_059-2023-3_4.pdf 502.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo