Previous |  Up |  Next

Article

Title: Numerical approaches to the modelling of quasi-brittle crack propagation (English)
Author: Vala, Jiří
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 3
Year: 2023
Pages: 295-303
Summary lang: English
.
Category: math
.
Summary: Computational analysis of quasi-brittle fracture in cement-based and similar composites, supplied by various types of rod, fibre, etc. reinforcement, is crucial for the prediction of their load bearing ability and durability, but rather difficult because of the risk of initiation of zones of microscopic defects, followed by formation and propagation of a large number of macroscopic cracks. A reasonable and complete deterministic description of relevant physical processes is rarely available. Thus, due to significance of such materials in the design and construction of buildings, semi-heuristic computational models must be taken into consideration. These models generate mathematical problems, whose solvability is not transparent frequently, which limits the credibility of all results of ad hoc designed numerical simulations. In this short paper such phenomena are demonstrated on a simple model problem, covering both micro- and macro-cracking, with references to needful generalizations and more realistic computational settings. (English)
Keyword: computational mechanics
Keyword: quasi-brittle fracture
Keyword: nonlocal elasticity
Keyword: smeared damage
Keyword: extended finite element method
MSC: 65M20
MSC: 65M60
MSC: 74A40
MSC: 74A45
MSC: 74H15
idZBL: Zbl 07675599
idMR: MR4563041
DOI: 10.5817/AM2023-3-295
.
Date available: 2023-02-22T15:01:22Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151577
.
Reference: [1] Altan, S.: Existence in nonlocal elasticity.Arch. Mech. 47 (1989), 25–36.
Reference: [2] Bažant, Z.P.: Why continuum damage is nonlocal: micromechanics arguments.J. Eng. Mech. 117 (1991), 1070–1089.
Reference: [3] Bermúdez de Castro, A.: Continuum Thermomechanics.Birkhäuser, Basel, 2005. MR 2145925
Reference: [4] Bybordiani, M., Dias da Costa, D.: A consistent finite element approach for dynamic crack propagation with explicit time integration.Comput. Methods Appl. Mech. Eng. 376 (2021), 1–32, 113652. MR 4200540, 10.1016/j.cma.2020.113652
Reference: [5] de Vree, J.H.P., Brekelmans, W.A.M., van Gils, M.A.J.: Comparison of nonlocal approaches in continuum damage mechanics.Comput. Struct. 55 (1995), 581–588. 10.1016/0045-7949(94)00501-S
Reference: [6] Drábek, P., Milota, I.: Methods of Nonlinear Analysis.Birkhäuser, Basel, 2013. MR 3025694
Reference: [7] Eringen, A.C.: Theory of Nonlocal Elasticity and Some Applications.Tech. report, Princeton University, Princeton, 1984.
Reference: [8] Evgrafov, A., Bellido, J.-C.: From nonlocal Eringen’s model to fractional elasticity.Math. Mech. Solids 24 (2019), 1935–1953. MR 3954360, 10.1177/1081286518810745
Reference: [9] Fasshauer, G.E., Ye, Q.: Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators.Numer. Math. 119 (2011), 585–611. MR 2845629, 10.1007/s00211-011-0391-2
Reference: [10] Fries, T.P., Belytschko, T.: The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns.Int. J. Numer. Methods Eng. 68 (2006), 1358–1385. 10.1002/nme.1761
Reference: [11] Giry, C., Dufour, F., Mazars, J.: Stress-based nonlocal damage model.Int. J. Solids Struct. 48 (2011), 3431–3443. 10.1016/j.ijsolstr.2011.08.012
Reference: [12] Hashiguchi, K.: Elastoplasticity Theory.Springer Berlin, 2014. MR 3235845
Reference: [13] Havlásek, P., Grassl, P., Jirásek, M.: Analysis of size effect on strength of quasi-brittle materials using integral-type nonlocal models.Eng. Fract. Mech. 157 (2016), 72–85. 10.1016/j.engfracmech.2016.02.029
Reference: [14] Ju, J.W.: Isotropic and anisotropic damage variables in continuum damage.J. Eng. Mech. 116 (1990), 2764–2770.
Reference: [15] Kamińska, I., Szwed, A.: A thermodynamically consistent model of quasibrittle elastic damaged materials based on a novel Helmholtz potential and dissipation function.MDPI Materials 14 (2021), 1–30, 6323.
Reference: [16] Kozák, V., Chlup, Z., Padělek, P., Dlouhá, I.: Prediction of the traction separation law of ceramics using iterative finite element modelling.Solid State Phenomena 258 (2017), 186–189. 10.4028/www.scientific.net/SSP.258.186
Reference: [17] Li, H., Li, J., Yuan, H.: A review of the extended finite element method on macrocrack and microcrack growth simulations.Theor. Appl. Fract. Mech. 97 (2018), 236–249. 10.1016/j.tafmec.2018.08.008
Reference: [18] Mariani, S., Perego, U.: Extended finite element method for quasi-brittle fracture.Int. J. Numer. Meth. Engn. 58 (2003), 103–126. MR 1999981, 10.1002/nme.761
Reference: [19] Mielke, A., Roubíček, T.: Rate-Independent Systems.Springer, New York, 2015. MR 3380972
Reference: [20] Mousavi, S.M.: Dislocation-based fracture mechanics within nonlocal and gradient elasticity of bi-Helmholtz type.Int. J. Solids Struct. 87 (2016), 92–93, 105–120. 10.1016/j.ijsolstr.2015.10.033
Reference: [21] Peerlings, R.H.J., R.de Borst, , Brekelmans, W.A.M., Geers, M.: Gradient enhanced damage modelling of concrete fracture.Int. J. Numer. Anal. Methods Geomech. 3 (1998), 323–342.
Reference: [22] Pijaudier-Cabot, G., Mazars, J.: Damage models for concrete.Handbook of Materials Behavior Models (Lemaitre, J., ed.), Academic Press, Cambridge (Massachusetts, USA), 2001, pp. 500–512.
Reference: [23] Pike, M.G., Oskay, C.: XFEM modeling of short microfiber reinforced composites with cohesive interfaces.Finite Elem. Anal. Des. 106 (2015), 16–31. 10.1016/j.finel.2015.07.007
Reference: [24] Roubíček, T.: Nonlinear Partial Differential Equations with Applications.Birkhäuser, Basel, 2005. MR 2176645
Reference: [25] Skala, V.: A practical use of radial basis functions interpolation and approximation.Investigación Operacional 37 (2016), 137–144. MR 3479842
Reference: [26] Štekbauer, H., Němec, I., Lang, R., Burkart, D., ValaSte22, J.: On a new computational algorithm for impacts of elastic bodies.Appl. Math. 67 (2022), 28 pp., in print. MR 4505704, 10.21136/AM.2022.0129-21
Reference: [27] Sumi, Y.: Mathematical and Computational Analyses of Cracking Formation.Springer, Tokyo, 2014. MR 3234571
Reference: [28] Sun, Y., Edwards, M.G., Chen, B., Li, C.: A state-of-the-art review of crack branching.Eng. Fract. Mech. 257 (2021), 1–33, 108036.
Reference: [29] Szabó, B., Babuška, I.: Finite Element Analysis: Method, Verification and Validation.J. Wiley & Sons, Hoboken, 2021. MR 1164869
Reference: [30] Turner, M.J., Clough, R.W., Martin, H.C., Top, L.J.: Stiffness and deflection analysis of complex structures.Journal of the Aeronautical Sciences 23 (1956), 805–823.
Reference: [31] Vala, J.: On a computational smeared damage approach to the analysis of strength of quasi-brittle materials.WSEAS Trans. Appl. Theor. Mech. 16 (2021), 283–292. 10.37394/232011.2021.16.31
Reference: [32] Vala, J., Kozák, V.: Computational analysis of quasi-brittle fracture in fibre reinforced cementitious composites.Theor. Appl. Fract. Mech.. 107 (2020), 1–8, 102486. 10.1016/j.tafmec.2020.102486
Reference: [33] Vala, J., Kozák, V.: Nonlocal damage modelling of quasi-brittle composites.Appl. Math. 66 (2021), 701–721. MR 4342610, 10.21136/AM.2021.0281-20
Reference: [34] Vala, J., Kozák, V., Jedlička, M.: Scale bridging in computational modelling of quasi-brittle fracture of cementitious composites.Solid State Phenomena 325 (2021), 56–64. 10.4028/www.scientific.net/SSP.325.59
Reference: [35] Vilppo, J., Kouhia, R., Hartikainen, J., Kolari, K., Fedoroff, A., Calonius, K.: Anisotropic damage model for concrete and other quasi-brittle materials.Int. J. Solids Struct. 225 (2021), 1–13, 111048. 10.1016/j.ijsolstr.2021.111048
Reference: [36] Zlámal, M.: On the finite element method.Numer. Math. 12 (1968), 394–409. 10.1007/BF02161362
.

Files

Files Size Format View
ArchMathRetro_059-2023-3_6.pdf 396.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo