Previous |  Up |  Next

Article

Title: On Euler methods for Caputo fractional differential equations (English)
Author: Tomášek, Petr
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 3
Year: 2023
Pages: 287-294
Summary lang: English
.
Category: math
.
Summary: Numerical methods for fractional differential equations have specific properties with respect to the ones for ordinary differential equations. The paper discusses Euler methods for Caputo differential equation initial value problem. The common properties of the methods are stated and demonstrated by several numerical experiments. Python codes are available to researchers for numerical simulations. (English)
Keyword: Caputo derivative
Keyword: numerical methods
Keyword: initial value problem
MSC: 26A33
MSC: 34A08
MSC: 65L05
idZBL: Zbl 07675598
idMR: MR4563040
DOI: 10.5817/AM2023-3-287
.
Date available: 2023-02-22T14:58:38Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151576
.
Reference: [1] Diethelm, K.: The analysis of fractional differential equations.Springer, Heidelberg, 2010. MR 2680847
Reference: [2] Diethelm, K.: An efficient parallel algorithm for the numerical solution of fractional differential equations.Fract. Calc. Appl. Anal. 84 (3) (2011), 475–490. MR 2837642, 10.2478/s13540-011-0029-1
Reference: [3] Diethelm, K., Kiryakova, V., Luchko, Y., Machado, J.A.T., Tarasov, V.E.: Trends, directions for further research, and some open problems of fractional calculus.Nonlinear Dyn. 107 (2022), 3245–3270.
Reference: [4] Garrappa, R.: Numerical solution of fractional differential equations: A survey and software tutorial.Mathematics 2018 (6) (2018), 1–23. MR 3836966
Reference: [5] Garrappa, R.: Neglecting nonlocality leads to unreliable numerical methods for fractional differential equations.Commun. Nonlinear Sci. Numer. Simul. 70 (2019), 302–306. MR 3874637, 10.1016/j.cnsns.2018.11.004
Reference: [6] Li, C.P., Zeng, F.H.: Numerical methods for fractional calculus.Chapman & Hall/CRC, Boca Raton, FL, 2015. MR 3381791
Reference: [7] Podlubny, I.: Fractional differential equations.Academic Press, San Diego, CA, 1999.
Reference: [8] Rosu, F.: Parallel algorithm for numerical methods applied to fractional-order system.Parallel algorithm for numerical methods applied to fractional-order system 21 (4) (2020), 701–707.
.

Files

Files Size Format View
ArchMathRetro_059-2023-3_5.pdf 717.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo