[1] Bradley, S. P., Hax, A. C., Magnanti, T. L.: 
Applied Mathematical Programming. Addison-Wesley Publishing Company, 1977. 
MR 0135622 
[2] Curry, S., Lee, I., Ma, S., Serban, N.: 
Global sensitivity analysis via a statistical tolerance approach. Europ. J. Oper. Res. 296 (2022), 1, 44-59. 
DOI  | 
MR 4304220 
[3] Dantzig, G.: 
Linear programming and extensions. In: Linear programming and extensions. Princeton Zniversity Press, 2016. 
MR 0201189 
[4] Filippi, C.: 
A fresh view on the tolerance approach to sensitivity analysis in linear programming. Europ. J. Oper. Res. 16 (2005), 1, 1-19. 
DOI  | 
MR 2148687 
[5] Gao, Z., Inuiguchi, M.: Estimating the optimal probability of a candidate basic solution in stochastic linear programming. In: 60th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), IEEE 2021, pp. 640-643.
[6] Gao, Z., Inuiguchi, M.: 
An analysis to treat the degeneracy of a basic feasible solution in interval linear programming. In: The Ninth International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM 2022). Publ. in Lecture Notes in Computer Science pp. 130-142, 2022. 
DOI  
[7] Garajová, E., Hladík, M.: 
On the optimal solution set in interval linear programming. Comput. Optim. Appl. 72 (2019), 1, 269-292. 
DOI  | 
MR 3904501 
[8] al., T. L. Heath et: 
The works of Archimedes. Courier Corporation, 2002. 
MR 2000800 
[9] Henk, M., Richter-Gebert, J., Goodman, G. M. Ziegler.: 
Basic properties of convex polytopes. In J. O'Rourke, J. editors Discrete, Handbook of Geometry, Computational Edition, 2nd 243-270, pages Raton, Boca FL Press., 2004. CRC 
MR 1730169 
[10] Hladík, M.: 
Multiparametric linear programming: support set and optimal partition invariancy. Europ. J. Oper. Res. 202 (2010), 1, 25-31, 2010. 
DOI  | 
MR 2556420 
[11] Hladík, M.: 
Complexity of necessary efficiency in interval linear programming and multiobjective linear programming. Optim. Lett. 6 (2012), 5, 893-899. 
DOI  | 
MR 2925625 
[12] Horst, R., Vries, J. De, Thoai, N. V.: 
On finding new vertices and redundant constraints in cutting plane algorithms for global optimization. Oper. Res. Lett. 7 (1988), 2, 85-90. 
DOI  | 
MR 0942873 
[13] Horst, R., Tuy, H.: 
Global optimization: Deterministic approaches. Springer Science and Business Media, 2013. 
MR 1102239 
[14] Inuiguchi, M.: 
Necessary efficiency is partitioned into possible and necessary optimalities. In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), IEEE 2013, pp. 209-214. 
DOI  
[15] Inuiguchi, M., Gao, Z., Henriques, C. O.: 
Robust optimality analysis of non-degenerate basic feasible solutions in linear programming problems with fuzzy objective coefficients. Fuzzy Optimization and Decision Making 22 (2023), 51-79. 
DOI  | 
MR 4547385 
[16] Inuiguchi, M., Ramík, J.: 
Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets Systems 111 (2000), 1, 3-28. 
DOI  | 
MR 1748690 
[17] Inuiguchi, M., Sakawa, M.: 
Possible and necessary efficiency in possibilistic multiobjective linear programming problems and possible efficiency test. Fuzzy Sets Systems 78 (1996), 2, 231-241. 
DOI  | 
MR 1379388 
[18] Inuiguchi, M., Sakawa, M.: 
An achievement rate approach to linear programming problems with an interval objective function. J. Oper. Res. Soc. 48 (1997), 1, 25-33. 
DOI  
[19] Inuiguchi, M., Sakawa, M.: 
Robust optimization under softness in a fuzzy linear programming problem. Int. J. Approx. Reas. 18 (1998), 1-2, 21-34. 
DOI  | 
MR 1657469 
[20] Jansen, B., Jong, J. De, Roos, C., Terlaky, T.: 
Sensitivity analysis in linear programming: just be careful!. Europ. J. Oper. Res. 101 (1997), 1, 15-28. 
DOI  
[21] Kall, P., Mayer, J.: 
Stochastic Linear Programming: Models, Theory, and Computation. Second Edition. Springer, Boston 2011. 
MR 2744572 
[22] Todd, M. J.: 
Probabilistic models for linear programming. Math. Oper. Res. 16 (1991), 4, 671-693. 
DOI  | 
MR 1135045 
[23] Wendell, R. E.: 
The tolerance approach to sensitivity analysis in linear programming. Management Sci. 31 (1985), 5, 564-578. 
DOI  | 
MR 0790107 
[24] Wendell, R. E.: 
Tolerance sensitivity and optimality bounds in linear programming. Management Sci. 50 (2004), 6, 797-803. 
DOI  
[25] Jr., F. R. Wondolowski: 
A generalization of wendell's tolerance approach to sensitivity analysis in linear programming. Decision Sci. 22 (1991), 4, 792-811. 
DOI