[1] Ahmed, A., Ahmed, E.: 
A survey on mobile edge computing. In: 2016 10th International Conference on Intelligent Systems and Control 2016, pp. 1-8. 
DOI [2] Ahmed, E., Akhunzada, A., Whaiduzzaman, M., Gani, A., Hamid, S. H. Ab, Buyya, R.: 
Network-centric performance analysis of runtime application migration in mobile cloud computing. Simul. Modelling Practice Theory 50 (2015), 42-56. 
DOI [3] Alakberov, R.: 
Strategy for reducing delays and energy consumption in cloudlet-based mobile cloud computing. Int. J. Wireless Networks Broadband Technol. 10 (2021), 1, 32-44. 
DOI [4] Alakberov, R. G.: 
Clustering method of mobile cloud computing according to technical characteristics of cloudlets. Int. J. Computer Network Inform. Security 14 (2022), 3, 75-87. 
DOI [5] Alakbarov, R., Alakbarov, O.: 
Procedure of effective use of cloudlets in wireless metropolitan area network environment. Int. J. Computer Networks Commun. 11 (2019), 1 93-107. 
DOI [6] Ala'anzy, M., Othman, M., Hanapi, Z. M., Alrshah, M. A.: 
Locust inspired algorithm for cloudlet scheduling in cloud computing environments. Sensors 21 (2021), 7308, 1-19. 
DOI [7] Alguliyev, R. M., Alakbarov, R. G.: Integer programming models for task scheduling and resource allocation in mobile cloud computing. Int. J. Computer Network Inform. Security, 2023 (in press).
[8] Asghar, H., Jung, E. S.: 
A survey on scheduling techniques in the edge cloud: issues, challenges and future directions. arXiv.org 2022, 1-19. 
DOI [9] Azad, P., Navimipour, N. J.: 
An energy-aware task scheduling in the cloud computing using a hybrid cultural and ant colony optimization algorithm. Int. J. Cloud Appl. Computing 7 (2017), 4, 20-40. 
DOI [10] Bagirov, A. M.: 
Modified global k-means algorithm for minimum sum-of-squares clustering problems. Pattern Recognition 41 (2008), 10, 3192-3199. 
DOI [11] Bindu, G. H., Ramani, K., Bindu, C. S.: 
Energy aware multi objective genetic algorithm for task scheduling in cloud computing. Int. J. Internet Protocol Technol. 11 (2018), 4, 242-249. 
DOI [12] Bradley, P. S., Bennett, K. P., Demiriz, A.: 
Constrained k-means clustering. Technical Report MSR-TR-2000-65, Microsoft Research, Redmond 2000, pp. 1-8. 
MR 1770524[13] Chen, X., Jiao, L., Li, W. Z., Fu, X. M.: 
Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Networking 24 (2015), 5, 2795-2808. 
DOI [14] Chen, L., Zhou, S., Xu, J.: 
Computation peer offloading for energy-constrained mobile edge computing in small-cell networks. IEEE ACM Trans. Networking 26 (2018), 4, 1619-1632. 
DOI [15] Dalan, D.: 
An overview of edge computing. Int. J. Engrg. Res. Technol. 7 (2019), 5, 1-4. 
MR 3828166[16] Hu, M., Zhuang, L., Wu, D., Zhou, Y. P., Chen, X., Xiao, L.: 
Learning driven computation offloading for asymmetrically informed edge computing. IEEE Trans. Parallel Distributed Systems 30 (2019), 8, 1802-1815. 
DOI [17] Liao, K., Yang, J., Miao, L.: 
Mobile edge computing offload strategy based on energy aware. In: International Conference on Network Communication and Information Security 2021, pp. 1-9. 
DOI  | 
MR 4439438[18] Lin, L., Li, P., Xiong, J., Lin, M.: 
Distributed and application-aware task scheduling in edge-clouds. In: 2018 14th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN) 2018, pp. 165-170. 
DOI [19] Lin, R., Zhou, Z., Luo, S., Xiao, Y., Zukerman, M.: 
Distributed optimization for computation offloading in edge computing. IEEE Trans. Wireless Commun. 19 (2020), 12, 8179-8194. 
DOI [20] Luo, Q., Hu, S., Li, C., Li, G., Shi, W.: 
Resource scheduling in edge computing: a survey. IEEE Commun. Survey Tutorials 23 (2021), 4, 2131-2165. 
DOI [21] Mach, P., Becvar, Z.: 
Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surveys Tutorials 19 (2017), 3, 1628-1656. 
DOI  | 
MR 3476603[22] Mike, J., Cao, J., Liang, W.: 
Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks. IEEE Trans. Cloud Computing 5 (2017), 4, 725-737. 
DOI [23] Mukherjee, A., Priti, D., De, D., Buyya, R.: 
IoTF2N: An energy-efficient architectural model for IoT using Femtolet-based fog network. J. Supercomputing 75 (2019), 11, 7125-7146. 
DOI [24] Nasr, A., El-Bahnasawy, N. A., Attiya, G., El-Sayed, A.: Cloudlet scheduling based load balancing on virtual machines in cloud computing environment. J. Internet Technol. 20 (2019), 5, 1376-1378.
[25] Sachula, M., Wang, Y., Miao, Z., Sun, K.: 
Joint optimization of wireless bandwidth and computing resource in cloudlet-based mobile cloud computing environment. Peer-to-Peer Networking Appl. 11 (2018), 3, 462-472. 
DOI [26] Sajnani, D. K., Mahesar, A. R., Lakhan, A., Jamali, I. A.: 
Latency aware and service delay with task scheduling in mobile edge computing. Commun. Network 10 (2018), 4, Article ID 87708. 
DOI [27] Shen, Y., Bao, Z., Qin, X., Shen, J.: 
Adaptive task scheduling strategy in cloud: when energy consumption meets performance guarantee. World Wide Web 20 (2016), 155-173. 
DOI [28] Shenoy, K., Bhokare, P., Pai, U.: 
Fog computing future of cloud computing. Int. J. Sci. Res. 4 (2015), 6, 55-56. 
DOI [29] Shreya, G., Mukherjee, A., Ghosh, S., Buyya, R.: 
Mobi-IoST: mobility-aware cloud-fog-edge-iot collaborative framework for time-critical applications. IEEE Trans. Network Science Engrg. 7 (2019), 4, 2271-2285. 
DOI [30] Somula, R. S., Ra, S.: 
A survey on mobile cloud computing: mobile computing$+$cloud computing (MCC$=$MC$+$CC). Scalable Computing: Practice and Experience 19 (2018) 4, 309-337. 
DOI [31] Vencalek, O., Hlubinka, D.: 
A depth-based modification of the k-nearest neighbour method. Kybernetika 57 (2021), 1, 15-37. 
DOI  | 
MR 4231854[32] Wang, X. Y., Ning, Z. L., Guo, S.: 
Multi-agent imitation learning for pervasive edge computing: a decentralized computation offloading algorithm. IEEE Trans. Parallel Distributed Systems 32 (2020), 2, 411-425. 
DOI [33] Yang, L. C., Zhang, H. L., Li, X., Ji, H., Leung, V. C. M.: 
A distributed computation offloading strategy in small-cell networks integrated with mobile edge computing. IEEE ACM Trans. Networking 26 (2018), 6, 2762-2773. 
DOI [34] Yuyi, M., You, C., Zhang, J., Huang, K., Letaief, K.: 
A survey on mobile edge computing: the communication perspective. IEEE Commun. Surveys Tutorials 19 (2017), 4, 2322-2358. 
DOI [35] Zhang, F., Ge, J., Li, Z., Li, C., Wong, C., Kong, L., Luo, B., Chang, V.: 
A load-aware resource allocation and task scheduling for the emerging cloudlet system. Future Generation Computer Systems 87 (2018), 438-456. 
DOI [36] Zhang, P., Zhou, M.: 
Dynamic cloud task scheduling based on a two-stage strategy. IEEE Trans. Automat. Sci. Engrg. 15 (2018), 2, 772-783. 
DOI