Title: | Multiscale homogenization of nonlinear hyperbolic-parabolic equations (English) |
Author: | Dehamnia, Abdelhakim |
Author: | Haddadou, Hamid |
Language: | English |
Journal: | Applications of Mathematics |
ISSN: | 0862-7940 (print) |
ISSN: | 1572-9109 (online) |
Volume: | 68 |
Issue: | 2 |
Year: | 2023 |
Pages: | 153-169 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | The main purpose of the present paper is to study the asymptotic behavior (when $\varepsilon \to 0$) of the solution related to a nonlinear hyperbolic-parabolic problem given in a periodically heterogeneous domain with multiple spatial scales and one temporal scale. Under certain assumptions on the problem's coefficients and based on a priori estimates and compactness results, we establish homogenization results by using the multiscale convergence method. (English) |
Keyword: | nonlinear hyperbolic-parabolic equation |
Keyword: | homogenization |
Keyword: | multiscale convergence method |
MSC: | 34M10 |
MSC: | 35B27 |
MSC: | 35B40 |
idZBL: | Zbl 07675564 |
idMR: | MR4574651 |
DOI: | 10.21136/AM.2022.0160-21 |
. | |
Date available: | 2023-03-31T09:34:08Z |
Last updated: | 2023-09-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151610 |
. | |
Reference: | [1] Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenisation.Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. Zbl 0866.35017, MR 1386865, 10.1017/S0308210500022757 |
Reference: | [2] Bensoussan, A., Lions, J. L., Papanicolaou, G.: Perturbations et ``augmentation'' des conditions initiales.Singular Perturbations and Boundary Layer Theory Lecture Notes in Mathematics 594. Springer, Berlin (1977), 10-29. Zbl 0362.35005, MR 0460848 |
Reference: | [3] Cioranescu, D., Donato, P.: An Introduction to Homogenization.Oxford Lecture Series in Mathematics and Its Applications 17. Oxford University Press, Oxford (1999). Zbl 0939.35001, MR 1765047 |
Reference: | [4] Clark, M. R.: Existence of weak solutions for abstract hyperbolic-parabolic equations.Int. J. Math. Math. Sci. 17 (1994), 759-769. Zbl 0813.35046, MR 1298800, 10.1155/S0161171294001067 |
Reference: | [5] Lima, O. A. de: Existence and uniqueness of solutions for an abstract nonlinear hyperbolic-parabolic equation.Appl. Anal. 24 (1987), 101-116. Zbl 0589.35063, MR 0904737, 10.1080/00036818708839657 |
Reference: | [6] Douanla, A., Tetsadjio, E.: Reiterated homogenization of hyperbolic-parabolic equations in domains with tiny holes.Electron. J. Differ. Equ. 2017 (2017), Article ID 59, 22 pages. Zbl 1370.35038, MR 3625939 |
Reference: | [7] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.: Homogenization of parabolic equations with an arbitrary number of scales in both space and time.J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages. Zbl 1406.35140, MR 3176810, 10.1155/2014/101685 |
Reference: | [8] Flodén, L., Persson, J.: Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales.Netw. Heterog.s Media 11 (2016), 627-653. Zbl 1356.35030, MR 3577222, 10.3934/nhm.2016012 |
Reference: | [9] Holmbom, A., Svanstedt, N., Wellander, N.: Multiscale convergence and reiterated homogenization of parabolic problems.Appl. Math., Praha 50 (2005), 131-151. Zbl 1099.35011, MR 2125155, 10.1007/s10492-005-0009-z |
Reference: | [10] Migórski, S.: Homogenization of hyperbolic-parabolic equations in perforated domains.Univ. Iagell. Acta Math. 33 (1996), 59-72. Zbl 0880.35016, MR 1422438 |
Reference: | [11] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization.SIAM J. Math. Anal. 20 (1989), 608-623. Zbl 0688.35007, MR 0990867, 10.1137/0520043 |
Reference: | [12] Persson, J.: Homogenization of monotone parabolic problems with several temporal scales.Appl. Math., Praha 57 (2012), 191-214. Zbl 1265.35018, MR 2984600, 10.1007/s10492-012-0013-z |
Reference: | [13] Yang, Z., Zhao, X.: A note on homogenization of the hyperbolic-parabolic equations in domains with holes.J. Math. Res. Appl. 36 (2016), 485-494. Zbl 1374.35045, MR 3559015, 10.3770/j.issn:2095-2651.2016.04.011 |
Reference: | [14] Yassine, H.: Well-posedness and asymptotic behavior of a nonautonomous, semilinear hyperbolic-parabolic equation with dynamical boundary condition of memory type.J. Integral Equations Appl. 25 (2013), 517-555. Zbl 1286.35042, MR 3161624, 10.1216/JIE-2013-25-4-517 |
. |
Fulltext not available (moving wall 24 months)