Title: | The maximum regularity property of the steady Stokes problem associated with a flow through a profile cascade in $L^r$-framework (English) |
Author: | Neustupa, Tomáš |
Language: | English |
Journal: | Applications of Mathematics |
ISSN: | 0862-7940 (print) |
ISSN: | 1572-9109 (online) |
Volume: | 68 |
Issue: | 2 |
Year: | 2023 |
Pages: | 171-190 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We deal with the steady Stokes problem, associated with a flow of a viscous incompressible fluid through a spatially periodic profile cascade. Using the reduction to domain $\Omega $, which represents one spatial period, the problem is formulated by means of boundary conditions of three types: the conditions of periodicity on curves $\Gamma _{-}$ and $\Gamma _{+}$ (lower and upper parts of $\partial \Omega $), the Dirichlet boundary conditions on $\Gamma _{\rm in}$ (the inflow) and $\Gamma _{0}$ (boundary of the profile) and an artificial ``do nothing''-type boundary condition on $\Gamma _{\rm out}$ (the outflow). We show that the considered problem has a strong solution with the $L^r$-maximum regularity property for appropriately integrable given data. From this we deduce a series of properties of the corresponding strong Stokes operator. (English) |
Keyword: | Stokes problem |
Keyword: | artificial boundary condition |
Keyword: | maximum regularity property |
MSC: | 35Q30 |
MSC: | 76D03 |
MSC: | 76D05 |
idZBL: | Zbl 07675565 |
idMR: | MR4574652 |
DOI: | 10.21136/AM.2022.0123-21 |
. | |
Date available: | 2023-03-31T09:34:59Z |
Last updated: | 2023-09-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151611 |
. | |
Reference: | [1] Abe, T.: On a resolvent estimate of the Stokes equation with Neumann-Dirichlet-type boundary condition on an infinite layer.Math. Methods Appl. Sci. 27 (2004), 1007-1048. Zbl 1050.35065, MR 2063094, 10.1002/mma.483 |
Reference: | [2] Acevedo, P., Amrouche, C., Conca, C., Ghosh, A.: Stokes and Navier-Stokes equations with Navier boundary conditions.C. R., Math., Acad. Sci. Paris 357 (2019), 115-119. Zbl 1412.35212, MR 3927018, 10.1016/j.crma.2018.12.002 |
Reference: | [3] Agmon, S.: Lectures on Elliptic Boundary Value Problems.Van Nostrand Mathematical Studies 2. D. Van Nostrand, New York (1965). Zbl 0142.37401, MR 0178246 |
Reference: | [4] Amrouche, C., Seloula, N. El Houda: On the Stokes equation with Navier-type boundary conditions.Differ. Equ. Appl. 3 (2011), 581-607. Zbl 1259.35092, MR 2918930, 10.7153/dea-03-36 |
Reference: | [5] Amrouche, C., Escobedo, M., Ghosh, A.: Semigroup theory for the Stokes operator with Navier boundary condition in $L^p$ spaces.Available at https://arxiv.org/abs/1808.02001 (2018), 45 pages. MR 4299328 |
Reference: | [6] Amrouche, C., Girault, V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension.Czech. Math. J. 44 (1994), 109-140. Zbl 0823.35140, MR 1257940, 10.21136/CMJ.1994.128452 |
Reference: | [7] Beneš, M., Kučera, P.: Solution to the Navier-Stokes equatons with mixed boundary conditions in two-dimensional bounded domains.Math. Nachr. 289 (2016), 194-212. Zbl 1381.35116, MR 3458302, 10.1002/mana.201400046 |
Reference: | [8] Bruneau, C.-H., Fabrie, P.: New efficient boundary conditions for incompressible Navier-Stokes equations: A well-posedness result.RAIRO, Modélisation Math. Anal. Numér. 30 (1996), 815-840. Zbl 0865.76016, MR 1423081, 10.1051/m2an/1996300708151 |
Reference: | [9] Chen, G., Osborne, D., Qian, Z.: The Navier-Stokes equations with the kinematic and vorticity boundary conditions on non-flat boundaries.Acta Math. Sci., Ser. B, Engl. Ed. 29 (2009), 919-948. Zbl 1212.35346, MR 2509999, 10.1016/S0252-9602(09)60078-3 |
Reference: | [10] Chen, G.-Q., Qian, Z.: A study of the Navier-Stokes equations with the kinematic and Navier boundary conditions.Indiana Univ. Math. J. 59 (2010), 721-760. Zbl 1206.35193, MR 2648084, 10.1512/iumj.2010.59.3898 |
Reference: | [11] Dauge, M.: Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. Part I: Linearized equations.SIAM J. Math. Anal. 20 (1989), 74-97. Zbl 0681.35071, MR 0977489, 10.1137/0520006 |
Reference: | [12] Feistauer, M., Felcman, J., Dolejší, V.: Numerical simulation of compressible viscous flow through cascades of profiles.Z. Angew. Math. Mech. 76 (1996), 297-300. Zbl 0925.76443, 10.1002/zamm.19960761422 |
Reference: | [13] Feistauer, M., Neustupa, T.: On some aspects of analysis of incompressible flow through cascades of profiles.Operator Theoretical Methods and Applications to Mathematical Physics Operator Theory: Advances and Applications 147. Birkhäuser, Basel (2004), 257-276. Zbl 1054.35051, MR 2053693, 10.1007/978-3-0348-7926-2_29 |
Reference: | [14] Feistauer, M., Neustupa, T.: On non-stationary viscous incompressible flow through a cascade of profiles.Math. Methods Appl. Sci. 29 (2006), 1907-1941. Zbl 1124.35054, MR 2259990, 10.1002/mma.755 |
Reference: | [15] Feistauer, M., Neustupa, T.: On the existence of a weak solution of viscous incompressible flow past a cascade of profiles with an arbitrarily large inflow.J. Math. Fluid Mech. 15 (2013), 701-715. Zbl 1293.35204, MR 3127015, 10.1007/s00021-013-0135-4 |
Reference: | [16] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady State Problems.Springer Monographs in Mathematics. Springer, New York (2011). Zbl 1245.35002, MR 2808162, 10.1007/978-0-387-09620-9 |
Reference: | [17] Glowinski, R.: Numerical Methods for Nonlinear Variational Problems.Springer Series in Computational Physics. Springer, New York (1984). Zbl 0536.65054, MR 0737005, 10.1007/978-3-662-12613-4 |
Reference: | [18] Grisvard, P.: Singularités des solutions du probléme de Stokes dans un polygone.Université de Nice, Nice (1979), preprint French. |
Reference: | [19] Grisvard, P.: Elliptic Problems in Nonsmooth Domains.Monographs and Studies in Mathematics 24. Pitman, Boston (1985). Zbl 0695.35060, MR 0775683, 10.1137/1.9781611972030 |
Reference: | [20] Heywood, J. G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations.Int. J. Numer. Methods Fluids 22 (1996), 325-352. Zbl 0863.76016, MR 1380844, 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y |
Reference: | [21] Kato, T., Mitrea, M., Ponce, G., Taylor, M.: Extension and representation of divergence-free vector fields on bounded domains.Math. Res. Lett. 7 (2000), 643-650. Zbl 0980.53022, MR 1809290, 10.4310/MRL.2000.v7.n5.a10 |
Reference: | [22] Kellogg, R. B., Osborn, J. E.: A regularity result for the Stokes problem in a convex polygon.J. Func. Anal. 21 (1976), 397-431. Zbl 0317.35037, MR 0404849, 10.1016/0022-1236(76)90035-5 |
Reference: | [23] Kozel, K., Louda, P., Příhoda, J.: Numerical solution of turbulent flow in a turbine cascade.Proc. Appl. Math. Mech. 6 (2006), 743-744. 10.1002/pamm.200610352 |
Reference: | [24] Kračmar, S., Neustupa, J.: Modelling of flows of a viscous incompressible fluid through a channel by means of variational inequalities.Z. Angew. Math. Mech. 74 (1994), T637--T639. Zbl 0836.35121 |
Reference: | [25] Kračmar, S., Neustupa, J.: A weak solvability of a steady variational inequality of the Navier-Stokes type with mixed boundary conditions.Nonlinear Anal., Theory Methods Appl. 47 (2001), 4169-4180. Zbl 1042.35605, MR 1972357, 10.1016/S0362-546X(01)00534-X |
Reference: | [26] Kračmar, S., Neustupa, J.: Modeling of the unsteady flow through a channel with an artificial outflow condition by the Navier-Stokes variational inequality.Math. Nachr. 291 (2018), 1801-1814. Zbl 1401.35239, MR 3844807, 10.1002/mana.201700228 |
Reference: | [27] Kučera, P.: Basic properties of solution of the non-steady Navier-Stokes equations with mixed boundary conditions in a bounded domain.Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 55 (2009), 289-308. Zbl 1205.35198, MR 2563661, 10.1007/s11565-009-0082-4 |
Reference: | [28] Kučera, P., Skalák, Z.: Local solutions to the Navier-Stokes equations with mixed boundary conditions.Acta Appl. Math. 54 (1998), 275-288. Zbl 0924.35097, MR 1671783, 10.1023/A:1006185601807 |
Reference: | [29] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow.Gordon and Breach Science Publishers, New York (1969). Zbl 0184.52603, MR 0254401 |
Reference: | [30] Medková, D.: One problem of the Navier type for the Stokes system in planar domains.J. Differ. Equations 261 (2016), 5670-5689. Zbl 1356.35181, MR 3548266, 10.1016/j.jde.2016.08.007 |
Reference: | [31] Medková, D.: Several non-standard problems for the stationary Stokes system.Analysis, München 40 (2020), 1-17. Zbl 1437.35586, MR 4069875, 10.1515/anly-2018-0035 |
Reference: | [32] Neustupa, T.: Question of existence and uniqueness of solution for Navier-Stokes equation with linear ``do-nothing'' type boundary condition on the outflow.Numerical Analysis and Its Applications Lecture Notes in Computer Science 5434. Springer, Berlin (2009), 431-438. Zbl 1233.35159, 10.1007/978-3-642-00464-3_49 |
Reference: | [33] Neustupa, T.: The analysis of stationary viscous incompressible flow through a rotating radial blade machine, existence of a weak solution.Appl. Math. Comput. 219 (2012), 3316-3322. Zbl 1309.76054, MR 2993903, 10.1016/j.amc.2011.05.020 |
Reference: | [34] Neustupa, T.: A steady flow through a plane cascade of profiles with an arbitrarily large inflow: The mathematical model, existence of a weak solution.Appl. Math. Comput. 272 (2016), 687-691. Zbl 1410.35098, MR 3423376, 10.1016/j.amc.2015.05.066 |
Reference: | [35] Neustupa, T.: The weak Stokes problem associated with a flow through a profile cascade in $L^r$-framework.Available at https://arxiv.org/abs/2009.08234v2 (2020), 20 pages. MR 4553623 |
Reference: | [36] Neustupa, T.: The maximum regularity property of the steady Stokes problem associated with a flow through a profile cascade.Acta Appl. Math. 172 (2021), Article ID 3, 23 pages. Zbl 1471.35220, MR 4220789, 10.1007/s10440-021-00396-4 |
Reference: | [37] Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach.Birkhäuser Advanced Texts. Birkhäuser, Basel (2001). Zbl 0983.35004, MR 1928881, 10.1007/978-3-0348-8255-2 |
Reference: | [38] Straka, P., Příhoda, J., Kožíšek, M., Fürst, J.: Simulation of transitional flows through a turbine blade cascade with heat transfer for various flow conditions.EPJ Web Conf. 143 (2017), Article ID 02118, 6 pages. 10.1051/epjconf/201714302118 |
Reference: | [39] Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis.Studies in Mathematics and Its Applications 2. North-Holland, Amsterdam (1977). Zbl 0383.35057, MR 0609732 |
. |
Fulltext not available (moving wall 24 months)