Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Stokes problem; artificial boundary condition; maximum regularity property
Summary:
We deal with the steady Stokes problem, associated with a flow of a viscous incompressible fluid through a spatially periodic profile cascade. Using the reduction to domain $\Omega $, which represents one spatial period, the problem is formulated by means of boundary conditions of three types: the conditions of periodicity on curves $\Gamma _{-}$ and $\Gamma _{+}$ (lower and upper parts of $\partial \Omega $), the Dirichlet boundary conditions on $\Gamma _{\rm in}$ (the inflow) and $\Gamma _{0}$ (boundary of the profile) and an artificial ``do nothing''-type boundary condition on $\Gamma _{\rm out}$ (the outflow). We show that the considered problem has a strong solution with the $L^r$-maximum regularity property for appropriately integrable given data. From this we deduce a series of properties of the corresponding strong Stokes operator.
References:
[1] Abe, T.: On a resolvent estimate of the Stokes equation with Neumann-Dirichlet-type boundary condition on an infinite layer. Math. Methods Appl. Sci. 27 (2004), 1007-1048. DOI 10.1002/mma.483 | MR 2063094 | Zbl 1050.35065
[2] Acevedo, P., Amrouche, C., Conca, C., Ghosh, A.: Stokes and Navier-Stokes equations with Navier boundary conditions. C. R., Math., Acad. Sci. Paris 357 (2019), 115-119. DOI 10.1016/j.crma.2018.12.002 | MR 3927018 | Zbl 1412.35212
[3] Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand Mathematical Studies 2. D. Van Nostrand, New York (1965). MR 0178246 | Zbl 0142.37401
[4] Amrouche, C., Seloula, N. El Houda: On the Stokes equation with Navier-type boundary conditions. Differ. Equ. Appl. 3 (2011), 581-607. DOI 10.7153/dea-03-36 | MR 2918930 | Zbl 1259.35092
[5] Amrouche, C., Escobedo, M., Ghosh, A.: Semigroup theory for the Stokes operator with Navier boundary condition in $L^p$ spaces. Available at https://arxiv.org/abs/1808.02001 (2018), 45 pages. MR 4299328
[6] Amrouche, C., Girault, V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czech. Math. J. 44 (1994), 109-140. DOI 10.21136/CMJ.1994.128452 | MR 1257940 | Zbl 0823.35140
[7] Beneš, M., Kučera, P.: Solution to the Navier-Stokes equatons with mixed boundary conditions in two-dimensional bounded domains. Math. Nachr. 289 (2016), 194-212. DOI 10.1002/mana.201400046 | MR 3458302 | Zbl 1381.35116
[8] Bruneau, C.-H., Fabrie, P.: New efficient boundary conditions for incompressible Navier-Stokes equations: A well-posedness result. RAIRO, Modélisation Math. Anal. Numér. 30 (1996), 815-840. DOI 10.1051/m2an/1996300708151 | MR 1423081 | Zbl 0865.76016
[9] Chen, G., Osborne, D., Qian, Z.: The Navier-Stokes equations with the kinematic and vorticity boundary conditions on non-flat boundaries. Acta Math. Sci., Ser. B, Engl. Ed. 29 (2009), 919-948. DOI 10.1016/S0252-9602(09)60078-3 | MR 2509999 | Zbl 1212.35346
[10] Chen, G.-Q., Qian, Z.: A study of the Navier-Stokes equations with the kinematic and Navier boundary conditions. Indiana Univ. Math. J. 59 (2010), 721-760. DOI 10.1512/iumj.2010.59.3898 | MR 2648084 | Zbl 1206.35193
[11] Dauge, M.: Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. Part I: Linearized equations. SIAM J. Math. Anal. 20 (1989), 74-97. DOI 10.1137/0520006 | MR 0977489 | Zbl 0681.35071
[12] Feistauer, M., Felcman, J., Dolejší, V.: Numerical simulation of compressible viscous flow through cascades of profiles. Z. Angew. Math. Mech. 76 (1996), 297-300. DOI 10.1002/zamm.19960761422 | Zbl 0925.76443
[13] Feistauer, M., Neustupa, T.: On some aspects of analysis of incompressible flow through cascades of profiles. Operator Theoretical Methods and Applications to Mathematical Physics Operator Theory: Advances and Applications 147. Birkhäuser, Basel (2004), 257-276. DOI 10.1007/978-3-0348-7926-2_29 | MR 2053693 | Zbl 1054.35051
[14] Feistauer, M., Neustupa, T.: On non-stationary viscous incompressible flow through a cascade of profiles. Math. Methods Appl. Sci. 29 (2006), 1907-1941. DOI 10.1002/mma.755 | MR 2259990 | Zbl 1124.35054
[15] Feistauer, M., Neustupa, T.: On the existence of a weak solution of viscous incompressible flow past a cascade of profiles with an arbitrarily large inflow. J. Math. Fluid Mech. 15 (2013), 701-715. DOI 10.1007/s00021-013-0135-4 | MR 3127015 | Zbl 1293.35204
[16] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady State Problems. Springer Monographs in Mathematics. Springer, New York (2011). DOI 10.1007/978-0-387-09620-9 | MR 2808162 | Zbl 1245.35002
[17] Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer Series in Computational Physics. Springer, New York (1984). DOI 10.1007/978-3-662-12613-4 | MR 0737005 | Zbl 0536.65054
[18] Grisvard, P.: Singularités des solutions du probléme de Stokes dans un polygone. Université de Nice, Nice (1979), preprint French.
[19] Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics 24. Pitman, Boston (1985). DOI 10.1137/1.9781611972030 | MR 0775683 | Zbl 0695.35060
[20] Heywood, J. G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 22 (1996), 325-352. DOI 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y | MR 1380844 | Zbl 0863.76016
[21] Kato, T., Mitrea, M., Ponce, G., Taylor, M.: Extension and representation of divergence-free vector fields on bounded domains. Math. Res. Lett. 7 (2000), 643-650. DOI 10.4310/MRL.2000.v7.n5.a10 | MR 1809290 | Zbl 0980.53022
[22] Kellogg, R. B., Osborn, J. E.: A regularity result for the Stokes problem in a convex polygon. J. Func. Anal. 21 (1976), 397-431. DOI 10.1016/0022-1236(76)90035-5 | MR 0404849 | Zbl 0317.35037
[23] Kozel, K., Louda, P., Příhoda, J.: Numerical solution of turbulent flow in a turbine cascade. Proc. Appl. Math. Mech. 6 (2006), 743-744. DOI 10.1002/pamm.200610352
[24] Kračmar, S., Neustupa, J.: Modelling of flows of a viscous incompressible fluid through a channel by means of variational inequalities. Z. Angew. Math. Mech. 74 (1994), T637--T639. Zbl 0836.35121
[25] Kračmar, S., Neustupa, J.: A weak solvability of a steady variational inequality of the Navier-Stokes type with mixed boundary conditions. Nonlinear Anal., Theory Methods Appl. 47 (2001), 4169-4180. DOI 10.1016/S0362-546X(01)00534-X | MR 1972357 | Zbl 1042.35605
[26] Kračmar, S., Neustupa, J.: Modeling of the unsteady flow through a channel with an artificial outflow condition by the Navier-Stokes variational inequality. Math. Nachr. 291 (2018), 1801-1814. DOI 10.1002/mana.201700228 | MR 3844807 | Zbl 1401.35239
[27] Kučera, P.: Basic properties of solution of the non-steady Navier-Stokes equations with mixed boundary conditions in a bounded domain. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 55 (2009), 289-308. DOI 10.1007/s11565-009-0082-4 | MR 2563661 | Zbl 1205.35198
[28] Kučera, P., Skalák, Z.: Local solutions to the Navier-Stokes equations with mixed boundary conditions. Acta Appl. Math. 54 (1998), 275-288. DOI 10.1023/A:1006185601807 | MR 1671783 | Zbl 0924.35097
[29] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach Science Publishers, New York (1969). MR 0254401 | Zbl 0184.52603
[30] Medková, D.: One problem of the Navier type for the Stokes system in planar domains. J. Differ. Equations 261 (2016), 5670-5689. DOI 10.1016/j.jde.2016.08.007 | MR 3548266 | Zbl 1356.35181
[31] Medková, D.: Several non-standard problems for the stationary Stokes system. Analysis, München 40 (2020), 1-17. DOI 10.1515/anly-2018-0035 | MR 4069875 | Zbl 1437.35586
[32] Neustupa, T.: Question of existence and uniqueness of solution for Navier-Stokes equation with linear ``do-nothing'' type boundary condition on the outflow. Numerical Analysis and Its Applications Lecture Notes in Computer Science 5434. Springer, Berlin (2009), 431-438. DOI 10.1007/978-3-642-00464-3_49 | Zbl 1233.35159
[33] Neustupa, T.: The analysis of stationary viscous incompressible flow through a rotating radial blade machine, existence of a weak solution. Appl. Math. Comput. 219 (2012), 3316-3322. DOI 10.1016/j.amc.2011.05.020 | MR 2993903 | Zbl 1309.76054
[34] Neustupa, T.: A steady flow through a plane cascade of profiles with an arbitrarily large inflow: The mathematical model, existence of a weak solution. Appl. Math. Comput. 272 (2016), 687-691. DOI 10.1016/j.amc.2015.05.066 | MR 3423376 | Zbl 1410.35098
[35] Neustupa, T.: The weak Stokes problem associated with a flow through a profile cascade in $L^r$-framework. Available at https://arxiv.org/abs/2009.08234v2 (2020), 20 pages. MR 4553623
[36] Neustupa, T.: The maximum regularity property of the steady Stokes problem associated with a flow through a profile cascade. Acta Appl. Math. 172 (2021), Article ID 3, 23 pages. DOI 10.1007/s10440-021-00396-4 | MR 4220789 | Zbl 1471.35220
[37] Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts. Birkhäuser, Basel (2001). DOI 10.1007/978-3-0348-8255-2 | MR 1928881 | Zbl 0983.35004
[38] Straka, P., Příhoda, J., Kožíšek, M., Fürst, J.: Simulation of transitional flows through a turbine blade cascade with heat transfer for various flow conditions. EPJ Web Conf. 143 (2017), Article ID 02118, 6 pages. DOI 10.1051/epjconf/201714302118
[39] Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and Its Applications 2. North-Holland, Amsterdam (1977). MR 0609732 | Zbl 0383.35057
Partner of
EuDML logo