Previous |  Up |  Next

Article

Title: Non-linear Chandrasekhar-Bénard convection\\ in temperature-dependent variable viscosity Boussinesq-Stokes suspension fluid with variable heat source/sink (English)
Author: Kavitha, Nagasundar
Author: Aruna, Agrahara Sanjeevmurthy
Author: Basavaraj, MKoppalu Shankarappa
Author: Ramachandramurthy, Venkatesh
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 3
Year: 2023
Pages: 357-376
Summary lang: English
.
Category: math
.
Summary: The generalized Lorenz model for non-linear stability of Rayleigh-Bénard magneto-convection is derived in the present paper. The Boussinesq-Stokes suspension fluid in the presence of variable viscosity (temperature-dependent viscosity) and internal heat source/sink is considered in this study. The influence of various parameters like suspended particles, applied vertical magnetic field, and the temperature-dependent heat source/sink has been analyzed. It is found that the basic state of the temperature gradient, viscosity variation, and the magnetic field can be conveniently expressed using the half-range Fourier cosine series. This facilitates to determine the analytical expression of the eigenvalue (thermal Rayleigh number) of the problem. From the analytical expression of the thermal Rayleigh number, it is evident that the Chandrasekhar number, internal Rayleigh number, Boussinesq-Stokes suspension parameters, and the thermorheological parameter influence the onset of convection. The non-linear theory involves the derivation of the generalized Lorenz model which is essentially a coupled autonomous system and is solved numerically using the classical Runge-Kutta method of the fourth order. The quantification of heat transfer is possible due to the numerical solution of the Lorenz system. It has been shown that the effect of heat source and temperature-dependent viscosity advance the onset of convection and thereby give rise to enhancing the heat transport. The Chandrasekhar number and the couple-stress parameter have stabilizing effects and reduce heat transfer. This problem has possible applications in the context of the magnetic field which influences the stability of the fluid. (English)
Keyword: Rayleigh-Bénard convection
Keyword: heat source/sink
Keyword: Boussinesq-Stokes suspension
Keyword: Boussinesq approximation
Keyword: Lorenz model
MSC: 76E30
MSC: 76W05
idZBL: Zbl 07729501
idMR: MR4586126
DOI: 10.21136/AM.2022.0037-22
.
Date available: 2023-05-04T17:39:57Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151658
.
Reference: [1] Aruna, A. S., Ramachandramurthy, V., Kavitha, N.: Non-linear Rayleigh-Bénard magnetoconvection in temperature-sensitive Newtonian liquids with variable heat source.J. Indian Math. Soc., New Ser. 88 (2021), 8-22. Zbl 07425434, MR 4213956, 10.18311/jims/2021/22782
Reference: [2] Bhattacharyya, S. P., Jena, S. K.: Thermal instability of a horizontal layer of micropolar fluid with heat source.Proc. Indian Acad. Sci., Math. Sci. 93 (1984), 13-26 \99999DOI99999 10.1007/BF02861831 . Zbl 0566.76009, MR 0796769, 10.1007/BF02861831
Reference: [3] Busse, F. H., Frick, H.: Square-pattern convection in fluids with strongly temperature-dependent viscosity.J. Fluid Mech. 150 (1985), 451-465. Zbl 0588.76073, 10.1017/S0022112085000222
Reference: [4] Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability.International Series of Monographs on Physics. Clarendon Press, Oxford (1961). Zbl 0142.44103, MR 0128226
Reference: [5] Clever, R. M.: Heat transfer and stability properties of convection rolls in an internally heated fluid layer.Z. Angew. Math. Phys. 28 (1977), 585-597. Zbl 0382.76038, 10.1007/BF01601337
Reference: [6] Gebhart, B., Jaluria, Y., Mahajan, R. L., Sammakia, B.: Buoyancy Induced Flows and Transport.Hemisphere Publishing Corporation, Washington (1988). Zbl 0699.76001
Reference: [7] Gireesha, B. J., Kumar, P. B. Sampath, Mahanthesh, B., Shehzad, S. A., Abbasi, F. M.: Nonlinear gravitational and radiation aspects in nanoliquid with exponential space dependent heat source and variable viscosity.Microgravity Sci. Technol. 30 (2018 ), 257-264. 10.1007/s12217-018-9594-9
Reference: [8] Kulacki, F. A., Goldstein, R. J.: Thermal convection in a horizontal fluid layer with uniform volumetric energy sources.J. Fluid Mech. 55 (1972), 271-287. 10.1017/S0022112072001855
Reference: [9] Makinde, O. D., Olajuwon, B. I., Gbolagade, A. W.: Adomian decomposition approach to a boundary layer flow with thermal radiation past a moving vertical porous plate.Int. J. Appl. Math. Mech. 3 (2007), 62-70.
Reference: [10] Manjunatha, S., Kuttan, B. Ammani, Jayanthi, S., Chamkha, A., Gireesha, B. J.: Heat transfer enhancement in the boundary layer flow of hybrid nanofluids due to variable viscosity and natural convection.Heliyon 5 (2019), Article ID e01469, 16 pages. 10.1016/j.heliyon.2019.e01469
Reference: [11] Maruthamanikandan, S., Thomas, N. M., Mathew, S.: Thermorheological and magnetorheological effects on Marangoni-ferroconvection with internal heat generation.J. Phys., Conf. Ser. 1139 (2018), Article ID 012024, 12 pages. 10.1088/1742-6596/1139/1/012024
Reference: [12] McKenzie, D. P., Roberts, J. M., Weiss, N. O.: Convection in the earth's mantle: Towards a numerical simulation.J. Fluid Mech. 62 (1974), 465-538. Zbl 0277.76087, 10.1017/S0022112074000784
Reference: [13] Meenakshi, N., Siddheshwar, P. G.: A theoretical study of enhanced heat transfer in nanoliquids with volumetric heat source.J. Appl. Math. Comput. 57 (2018), 703-728. Zbl 1394.35368, MR 3790197, 10.1007/s12190-017-1129-9
Reference: [14] Palm, E.: Nonlinear thermal convection.Annual Review of Fluid Mechanics. Volume 7 Annual Reviews, Palo Alto (1975), 39-61. Zbl 0358.76038, 10.1146/annurev.fl.07.010175.000351
Reference: [15] Platten, J. K., Legros, J. C.: Convection in Liquids.Springer, Berlin (1984). Zbl 0545.76048, 10.1007/978-3-642-82095-3
Reference: [16] Ramachandramurthy, V., Aruna, A. S.: Rayleigh-Bénard magnetoconvection in temperature-sensitive Newtonian liquids with heat source.Math. Sci. Int. Research J. 6 (2017), 92-98.
Reference: [17] Ramachandramurthy, V., Aruna, A. S., Kavitha, N.: Bénard-Taylor convection in temperature-dependent variable viscosity Newtonian liquids with internal heat source.Int. J. Appl. Comput. Math. 6 (2020), Article ID 27, 14 pages. Zbl 1461.76160, MR 4062157, 10.1007/s40819-020-0781-1
Reference: [18] Ramachandramurthy, V., Uma, D., Kavitha, N.: Effect of non-inertial acceleration on heat transport by Rayleigh-Bénard magnetoconvection in Boussinesq-Stokes suspension with variable heat source.Int. J. Appl. Eng. Research 14 (2019), 2126-2133.
Reference: [19] Riahi, N.: Nonlinear convection in a horizontal layer with an internal heat source.J. Phys. Soc. Jap. 53 (1984), 4169-4178. MR 0779210, 10.1143/JPSJ.53.4169
Reference: [20] Riahi, N.: Convection in a low Prandtl number fluid with internal heating.Int. J. Non-Linear Mech. 21 (1986), 97-105. Zbl 0592.76049, MR 0840767, 10.1016/0020-7462(86)90016-8
Reference: [21] Roberts, P. H.: Convection in horizontal layers with internal heat generation: Theory.J. Fluid Mech. 30 (1967), 33-49. 10.1017/S0022112067001284
Reference: [22] Severin, J., Herwig, H.: Onset of convection in the Rayleigh-Bénard flow with temperature dependent viscosity: An asymptotic approach.Z. Angew. Math. Phys. 50 (1999), 375-386. Zbl 0926.76045, MR 1697713, 10.1007/PL00001494
Reference: [23] Sharma, R. C., Sharma, M.: Effect of suspended particles on couple-stress fluid heated from below in the presence of rotation and magnetic field.Indian J. Pure Appl. Math. 35 (2004), 973-989. Zbl 1115.76327
Reference: [24] Siddheshwar, P. G.: Thermorheological effect on magnetoconvection in weak electrically conducting fluids under 1g and $\mu_g$.Pramana J. Phys. 62 (2004), 61-68. 10.1007/BF02704425
Reference: [25] Siddheshwar, P. G.: A series solution for the Ginzburg-Landau equation with a time-periodic coefficient.Appl. Math., Irvine 1 (2010), 542-554. 10.4236/am.2010.16072
Reference: [26] Siddheshwar, P. G., Bhadauria, B. S., Mishra, P., Srivastava, A. K.: Study of heat transport by stationary magneto-convection in a Newtonian liquid under temperature or gravity modulation using Ginzburg-Landau model.Int. J. Non-Linear Mech. 47 (2012), 418-425. 10.1016/j.ijnonlinmec.2011.06.006
Reference: [27] Siddheshwar, P. G., Pranesh, S.: Magnetoconvection in fluids with suspended particles under 1g and $\mu g$.Aerosp. Sci. Technol. 6 (2002), 105-114. Zbl 1006.76545, 10.1016/S1270-9638(01)01144-0
Reference: [28] Siddheshwar, P. G., Pranesh, S.: An analytical study of linear and non-linear convection in Boussinesq-Stokes suspensions.Int. J. Non-Linear Mech. 39 (2004), 165-172. Zbl 1348.76176, 10.1016/S0020-7462(02)00169-5
Reference: [29] Siddheshwar, P. G., Ramachandramurthy, V., Uma, D.: Rayleigh-Bénard and Marangoni magnetoconvection in Newtonian liquid with thermorheological effects.Int. J. Eng. Sci. 49 (2011), 1078-1094. Zbl 1423.76504, 10.1016/j.ijengsci.2011.05.020
Reference: [30] Siddheshwar, P. G., Titus, P. S.: Nonlinear Rayleigh-Bénard convection with variable heat source.J. Heat Transfer 135 (2013), Article ID 122502, 12 pages. 10.1115/1.4024943
Reference: [31] Somerscales, E. F. C., Dougherty, T. S.: Observed flow patterns at the initiation of convection in a horizontal liquid layer heated from below.J. Fluid Mech. 42 (1970), 755-768. 10.1017/S0022112070001593
Reference: [32] Sparrow, E. M., Goldstein, R. J., Jonsson, V. K.: Thermal instability in a horizontal fluid layer: Effect of boundary conditions and non-linear temperature profile.J. Fluid Mech. 18 (1964), 513-528. Zbl 0128.20401, MR 0187533, 10.1017/S0022112064000386
Reference: [33] Stengel, K. C., Oliver, D. S., Booker, J. R.: Onset of convection in a variable viscosity fluid.J. Fluid Mech. 120 (1982), 411-431. Zbl 0534.76093, 10.1017/S0022112082002821
Reference: [34] Thirlby, R.: Convection in an internally heated layer.J. Fluid Mech. 44 (1970), 673-693. Zbl 0219.76098, 10.1017/S0022112070002082
Reference: [35] Torrance, K. E., Turcotte, D. L.: Thermal convection with large viscosity variations.J. Fluid Mech. 47 (1971), 113-125. 10.1017/S002211207100096X
Reference: [36] Tritton, D. J., Zarraga, M. N.: Convection in horizontal layers with internal heat generation: Experiments.J. Fluid Mech. 30 (1967), 21-31. 10.1017/S0022112067001272
Reference: [37] Watson, E. L.: Rheological behaviour of apricot purees and concentrates.Can. Agric. Eng. 10 (1968), 8-11.
Reference: [38] Yusuf, A. B., Ajibade, O. A.: Combined effects of variable viscosity, viscous dissipation and thermal radiation on unsteady natural convection couette flow through a vertical porous channel.FUDMA J. Sci. 4 (2020), 135-150. 10.33003/fjs-2020-0402-208
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo