Previous |  Up |  Next

Article

Title: Exponential stability conditions for non-autonomous differential equations with unbounded commutators in a Banach space (English)
Author: Gil', Michael
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 2
Year: 2023
Pages: 355-366
Summary lang: English
.
Category: math
.
Summary: We consider the equation ${\rm d}y(t)/{\rm d}t=(A+B(t))y(t)$ $(t\ge 0)$, where $A$ is the generator of an analytic semigroup $({\rm e}^{At})_{t\ge 0}$ on a Banach space ${\cal X}$, $B(t)$ is a variable bounded operator in ${\cal X}$. It is assumed that the commutator $K(t)=AB(t)-B(t)A$ has the following property: there is a linear operator $S$ having a bounded left-inverse operator $S_l^{-1}$ such that $\|S {\rm e}^{At}\|$ is integrable and the operator $K(t)S_l^{-1}$ is bounded. Under these conditions an exponential stability test is derived. As an example we consider a coupled system of parabolic equations. (English)
Keyword: Banach space
Keyword: differential equation
Keyword: linear nonautonomous equation
Keyword: exponential stability
Keyword: commutator
Keyword: parabolic equation
MSC: 34G10
MSC: 35B35
MSC: 35K51
MSC: 47D06
idZBL: Zbl 07729512
idMR: MR4586899
DOI: 10.21136/CMJ.2023.0188-21
.
Date available: 2023-05-04T17:42:10Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151662
.
Reference: [1] Alabau, F., Cannarsa, P., Komornik, V.: Indirect internal stabilization of weakly coupled evolution equations.J. Evol. Equ. 2 (2002), 127-150. Zbl 1011.35018, MR 1914654, 10.1007/s00028-002-8083-0
Reference: [2] Andrica, D., (eds.), T. M. Rassias: Differential and Integral Inequalities.Springer Optimization and Its Applications 151. Springer, Cham (2019). Zbl 1431.26003, MR 3972115, 10.1007/978-3-030-27407-8
Reference: [3] Chicone, C., Latushkin, Y.: Evolution Semigrous in Dynamical Systems and Differential Equations.Mathematical Survey and Monographs 70. AMS, Providence (1999). Zbl 0970.47027, MR 1707332, 10.1090/surv/070
Reference: [4] Cialdea, A., Lanzara, F.: Stability of solutions of evolution equations.Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 24 (2013), 451-469. Zbl 1282.35057, MR 3129748, 10.4171/RLM/661
Reference: [5] Curtain, R. F., Oostveen, J. C.: Necessary and sufficient conditions for strong stability of distributed parameter systems.Syst. Control Lett. 37 (1999), 11-18. Zbl 0917.93059, MR 1752433, 10.1016/S0167-6911(98)00109-1
Reference: [6] Daleckii, Y. L., Krein, M. G.: Stability of Solutions of Differential Equations in Banach Space.Translations of Mathematical Monographs 43. AMS, Providence (1974). Zbl 0286.34094, MR 0352639, 10.1090/mmono/043
Reference: [7] Dragan, V., Morozan, T.: Criteria for exponential stability of linear differential equations with positive evolution on ordered Banach spaces.IMA J. Math. Control Inf. 27 (2010), 267-307. Zbl 1222.34066, MR 2721169, 10.1093/imamci/dnq013
Reference: [8] Fourrier, N., Lasiecka, I.: Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions.Evol. Equ. Control Theory 2 (2013), 631-667. Zbl 1277.35232, MR 3177247, 10.3934/eect.2013.2.631
Reference: [9] Gil', M.: Integrally small perturbations of semigroups and stability of partial differential equations.Int. J. Partial Differ. Equ. 2013 (2013), Article ID 207581, 5 pages. Zbl 1304.35090, 10.1155/2013/207581
Reference: [10] Gil', M. I.: Operator Functions and Operator Equations.World Scientific, Hackensack (2018). Zbl 1422.47004, MR 3751395, 10.1142/10482
Reference: [11] Gil', M. I.: Stability of evolution equations with small commutators in a Banach space.Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 29 (2018), 589-596. Zbl 07032412, MR 3896255, 10.4171/RLM/822
Reference: [12] Gil', M. I.: Stability of linear equations with differentiable operators in a Hilbert space.IMA J. Math. Control Inf. 37 (2020), 19-26. Zbl 1436.93115, MR 4073909, 10.1093/imamci/dny035
Reference: [13] Henry, D.: Geometric Theory of Semilinear Parabolic Equations.Lectures Notes in Mathematics 840. Springer, Berlin (1981). Zbl 0456.35001, MR 0610244, 10.1007/BFb0089647
Reference: [14] Krein, S. G.: Linear Differential Equations in Banach Space.Translations of Mathematical Monographs 29. AMS, Providence (1972). Zbl 0229.34050, MR 0342804, 10.1090/mmono/029
Reference: [15] Laasri, H., El-Mennaoui, O.: Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity.Czech. Math. J. 63 (2013), 887-908. Zbl 1313.35203, MR 3165503, 10.1007/s10587-013-0060-y
Reference: [16] Nicaise, S.: Convergence and stability analyses of hierarchic models of dissipative second order evolution equations.Collect. Math. 68 (2017), 433-462. Zbl 1375.35047, MR 3683020, 10.1007/s13348-017-0192-8
Reference: [17] Oostveen, J.: Strongly Stabilizable Distributed Parameter Systems.Frontiers in Applied Mathematics 20. SIAM, Philadelphia (2000). Zbl 0964.93004, MR 1773377, 10.1137/1.9780898719864
Reference: [18] Pucci, P., Serrin, J.: Asymptotic stability for nonautonomous dissipative wave systems.Commun. Pure Appl. Math. 49 (1996), 177-216. Zbl 0865.35089, MR 1371927, 10.1002/(SICI)1097-0312(199602)49:2<177::AID-CPA3>3.0.CO;2-B
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo