Previous |  Up |  Next

Article

Title: On extending ${\rm C}^{k}$ functions from an open set to $\mathbb R$ with applications (English)
Author: Burgess, Walter D.
Author: Raphael, Robert M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 2
Year: 2023
Pages: 487-498
Summary lang: English
.
Category: math
.
Summary: For $k\in {\mathbb N} \cup \{\infty \}$ and $U$ open in $ {\mathbb R}$, let ${\rm C}^{k}(U)$ be the ring of real valued functions on $U$ with the first $k$ derivatives continuous. It is shown that for $f\in {\rm C}^{k}(U)$ there is $g\in {\rm C}^{\infty } ({\mathbb R})$ with $U\subseteq {\rm coz} g$ and $h\in {\rm C}^{k} ({\mathbb R})$ with $fg|_U=h|_U$. The function $f$ and its $k$ derivatives are not assumed to be bounded on $U$. The function $g$ is constructed using splines based on the Mollifier function. Some consequences about the ring ${\rm C}^{k} ({\mathbb R})$ are deduced from this, in particular that ${\rm Q}_{\rm cl} ({\rm C}^{k} ({\mathbb R})) = {\rm Q}({\rm C}^{k} ({\mathbb R}))$. (English)
Keyword: ${\rm C}^k$ function
Keyword: spline
Keyword: ring of quotient
Keyword: Mollifier function
MSC: 13B30
MSC: 26A24
MSC: 54C30
idZBL: Zbl 07729519
idMR: MR4586906
DOI: 10.21136/CMJ.2023.0445-21
.
Date available: 2023-05-04T17:46:43Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151669
.
Reference: [1] Anderson, D. F., Badawi, A.: Divisibility conditions in commutative rings with zerodivisors.Commun. Algebra 30 (2002), 4031-4047. Zbl 1063.13003, MR 1922326, 10.1081/AGB-120005834
Reference: [2] Azarpanah, F., Ghashghaei, E., Ghoulipour, M.: $C(X)$: Something old and something new.Commun. Algebra 49 (2021), 185-206. Zbl 1453.13008, MR 4193623, 10.1080/00927872.2020.1797070
Reference: [3] Barr, M., Burgess, W. D., Raphael, R.: Ring epimorphisms and $C(X)$.Theory Appl. Categ. 11 (2003), 283-308. Zbl 1042.54007, MR 1988400
Reference: [4] Barr, M., Kennison, J. F., Raphael, R.: Limit closures of classes of commutative rings.Theory Appl. Categ. 30 (2015), 229-304. Zbl 1327.13084, MR 3322157
Reference: [5] Blair, R. L., Hager, A. W.: Extensions of zero-sets and real-valued functions.Math. Z. 136 (1974), 41-52. Zbl 0264.54011, MR 0385793, 10.1007/BF01189255
Reference: [6] Fine, N. J., Gillman, L., Lambek, J.: Rings of Quotients of Rings of Functions.McGill University Press, Montreal (1966). Zbl 0143.35704, MR 0200747
Reference: [7] Gillman, L., Jerison, M.: Ring of Continuous Functions.Graduate Texts in Mathematics 43. Springer, New York (1976). Zbl 0327.46040, MR 0407579, 10.1007/978-1-4615-7819-2
Reference: [8] Henriksen, M.: Rings of continuous functions from an algebraic point of view.Ordered Algebraic Structures Mathematics and its Applications 55. Kluwer Academic, Dordrecht (1989), 143-174. Zbl 0739.46011, MR 1094833, 10.1007/978-94-009-2472-7_12
Reference: [9] Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis.Grundlehren der Mathematischen Wissenschaften 256. Springer, Berlin (1983). Zbl 0521.35001, MR 0717035, 10.1007/978-3-642-96750-4
Reference: [10] Knox, M. L., Levy, R., McGovern, W. W., Shapiro, J.: Generalizations of complemented rings with applications to rings of functions.J. Algebra Appl. 8 (2009), 17-40. Zbl 1173.13002, MR 2191531, 10.1142/S0219498809003138
Reference: [11] Lambek, J.: Lectures on Rings and Modules.Chelsea Publishing, New York (1976). Zbl 0365.16001, MR 0419493
Reference: [12] Stenström, B.: Rings of Quotients: An Introduction to Methods of Ring Theory.Die Grundlehren der mathematischen Wissenschaften 217. Springer, Berlin (1975). Zbl 0296.16001, MR 0389953, 10.1007/978-3-642-66066-5
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo