Article
Keywords:
multiquadratic number field; unit group; fundamental system of units
Summary:
Let $p\equiv 1\pmod {8}$ and $q\equiv 3\pmod 8$ be two prime integers and let $\ell \not \in \{-1, p, q\}$ be a positive odd square-free integer. Assuming that the fundamental unit of $\mathbb {Q}\big (\sqrt {2p}\big ) $ has a negative norm, we investigate the unit group of the fields $\mathbb {Q}\big (\sqrt 2, \sqrt {p}, \sqrt {q}, \sqrt {-\ell } \big )$.
References:
                        
[1] Azizi, 	A.: 
Unités de certains corps de nombres imaginaires et abéliens sur $\mathbb{Q}$. Ann. Sci. Math. Qué. 23 (1999), 15-21 French. 
MR 1721726 | 
Zbl 1041.11072[7] Varmon, J.: Über Abelsche Körper, deren alle Gruppeninvarianten aus einer Primzahl bestehen, und über Abelsche Körper als Kreiskörper. Hakan Ohlssons Boktryckeri, Lund (1925), German \99999JFM99999 51.0123.05.
[8] Wada, H.: 
On the class number and the unit group of certain algebraic number fields. J. Fac. Sci, Univ. Tokyo, Sect. I 13 (1966), 201-209 \99999MR99999 0214565 		 		 		 		. 
MR 0214565 | 
Zbl 0158.30103