Previous |  Up |  Next

Article

Title: A generalization of the classical Euler and Korteweg fluids (English)
Author: Rajagopal, Kumbakonam Ramamani
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 4
Year: 2023
Pages: 485-497
Summary lang: English
.
Category: math
.
Summary: The aim of this short paper is threefold. First, we develop an implicit generalization of a constitutive relation introduced by Korteweg (1901) that can describe the phenomenon of capillarity. Second, using a sub-class of the constitutive relations (implicit Euler equations), we show that even in that simple situation more than one of the members of the sub-class may be able to describe one or a set of experiments one is interested in describing, and we must determine which amongst these constitutive relations is the best by culling the class by systematically comparing against an increasing set of observations. (The implicit generalization developed in this paper is not a sub-class of the implicit generalization of the Navier-Stokes fluid developed by Rajagopal (2003), (2006) or the generalization due to Průša and Rajagopal (2012), as spatial gradients of the density appear in the constitutive relation developed by Korteweg (1901).) Third, we introduce a challenging set of partial differential equations that would lead to new techniques in both analysis and numerical analysis to study such equations. (English)
Keyword: compressible fluid
Keyword: Euler fluid
Keyword: Korteweg fluid
Keyword: implicit constitutive equation
MSC: 35Q53
idZBL: Zbl 07729508
idMR: MR4612744
DOI: 10.21136/AM.2023.0010-23
.
Date available: 2023-07-10T14:13:41Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151706
.
Reference: [1] Blechta, J., Málek, J., Rajagopal, K. R.: On the classification of incompressible fluids and a mathematical analysis of the equations that govern their motion.SIAM J. Math. Anal. 52 (2020), 1232-1289. Zbl 1432.76075, MR 4076814, 10.1137/19M1244895
Reference: [2] Coleman, B. D., Noll, W.: An approximation theorem for functionals, with applications in continuum mechanics.Arch. Ration. Mech. Anal. 6 (1960), 355-370. Zbl 0097.16403, MR 0119598, 10.1007/BF00276168
Reference: [3] Euler, L.: Sur le mouvement de l'eau par des tuyaux de conduite.Mémoires de l'académie des sciences de Berlin 8 (1754), 111-148 French Available at https://scholarlycommons.pacific.edu/euler-works/206\kern0pt.
Reference: [4] Euler, L.: Principes généraux du mouvement des fluides.Mémoires de l'académie des sciences de Berlin 11 (1757), 274-315 French Available at https://scholarlycommons.pacific.edu/euler-works/226/\kern0pt.
Reference: [5] Euler, L.: Principia motus fluidorum.Novi Commentarii academiae scientiarum Petro-politanae 6 (1761), 271-311 Latin Available at https://scholarlycommons.pacific.edu/euler-works/258/\kern0pt.
Reference: [6] Fosdick, R. L., Rajagopal, K. R.: On the existence of a manifold for temperature.Arch. Ration. Mech. Anal. 81 (1983), 317-332. MR 683193, 10.1007/BF00250858
Reference: [7] Goodman, M. A., Cowin, S. C.: A continuum theory for granular materials.Arch. Ration. Mech. Anal. 44 (1972), 249-266. Zbl 0243.76005, MR 1553563, 10.1007/BF00284326
Reference: [8] Green, G.: On the laws of the reflexion and refraction of light at the common surface of two non-crystallized media.Cambr. Phil. Soc. 7 (1837), 1-24 \99999JFM99999 03.0565.01. 10.1017/CBO9781107325074.009
Reference: [9] Hutter, K., Rajagopal, K. R.: On flows of granular materials.Contin. Mech. Thermodyn. 6 (1994), 81-139. Zbl 0804.73003, MR 1277702, 10.1007/BF01140894
Reference: [10] Korteweg, D. J.: Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité.Arch. Néerl. (2) 6 (1901), 1-24 French \99999JFM99999 32.0756.02.
Reference: [11] Roux, C. Le, Rajagopal, K. R.: Shear flows of a new class of power-law fluids.Appl. Math., Praha 58 (2013), 153-177. Zbl 1274.76039, MR 3034820, 10.1007/s10492-013-0008-4
Reference: [12] Málek, J., Průša, V., Rajagopal, K. R.: Generalizations of the Navier-Stokes fluid from a new perspective.Int. J. Eng. Sci. 48 (2010), 1907-1924. Zbl 1231.76073, MR 2778752, 10.1016/j.ijengsci.2010.06.013
Reference: [13] Málek, J., Rajagopal, K. R.: On the modeling of inhomogeneous incompressible fluid-like bodies.Mech. Mater. 38 (2006), 233-242. 10.1016/j.mechmat.2005.05.020
Reference: [14] Málek, J., Rajagopal, K. R.: Compressible generalized Newtonian fluids.Z. Angew. Math. Phys. 61 (2010), 1097-1110. Zbl 1273.76025, MR 2738306, 10.1007/s00033-010-0061-8
Reference: [15] Maxwell, J. C.: Theory of Heat.Green and Co., London (1871),\99999JFM99999 24.1095.01. 10.1017/CBO9781139057943
Reference: [16] McLeod, J. B., Rajagopal, K. R., Wineman, A. S.: On the existence of a class of deformations for incompressible isotropic elastic materials.Proc. R. Ir. Acad., Sect. A 88 (1988), 91-101. Zbl 0676.73015, MR 986216
Reference: [17] Noll, W.: A mathematical theory of the mechanical behavior of continuous media.Arch. Ration. Mech. Anal. 2 (1958), 198-226. Zbl 0083.39303, MR 0105862, 10.1007/BF00277929
Reference: [18] Perlácová, T., Průša, V.: Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids.J. Non-Newton. Fluid Mech. 216 (2015), 13-21. MR 3441833, 10.1016/j.jnnfm.2014.12.006
Reference: [19] Průša, V., Rajagopal, K. R.: On implicit constitutive relations for materials with fading memory.J. Non-Newton. Fluid Mech. 181-182 (2012), 22-29. MR 2263984, 10.1016/j.jnnfm.2012.06.004
Reference: [20] Rajagopal, K. R.: On implicit constitutive theories.Appl. Math., Praha 48 (2003), 279-319. Zbl 1099.74009, MR 1994378, 10.1023/A:1026062615145
Reference: [21] Rajagopal, K. R.: On implicit constitutive theories for fluids.J. Fluid Mech. 550 (2006), 243-249. Zbl 1097.76009, MR 2263984, 10.1017/S0022112005008025
Reference: [22] Rajagopal, K. R.: The elasticity of elasticity.Z. Angew. Math. Phys. 58 (2007), 309-317. Zbl 1113.74006, MR 2305717, 10.1007/s00033-006-6084-5
Reference: [23] Rajagopal, K. R.: A note on the classification of anisotropy of bodies defined by implicit constitutive relations.Mech. Res. Commun. 64 (2015), 38-41. 10.1016/j.mechrescom.2014.11.005
Reference: [24] Rajagopal, K. R.: Remarks on the notion of ``pressure''.Int. J. Non-Linear Mech. 71 (2015), 165-172. 10.1016/j.ijnonlinmec.2014.11.031
Reference: [25] Rajagopal, K. R., Wineman, A.: On constitutive equations for branching of response with selectivity.Int. J. Non-Linear Mech. 15 (1980), 83-91. Zbl 0442.73002, MR 0580724, 10.1016/0020-7462(80)90002-5
Reference: [26] Souček, O., Heida, M., Málek, J.: On a thermodynamic framework for developing boundary conditions for Korteweg-type fluids.Int. J. Eng. Sci. 154 (2020), Article ID 103316, 27 pages. Zbl 07228661, MR 4114183, 10.1016/j.ijengsci.2020.103316
Reference: [27] Spencer, A. J. M.: Theory of invariants.Continuum Physics. Vol. 1 Academic Press, New York (1971), 239-353. MR 0597343, 10.1016/B978-0-12-240801-4.50008-X
Reference: [28] Truesdell, C. A.: A First Course in Rational Continuum Mechanics. Vol. 1. General Concepts.Pure and Applied Mathematics 71. Academic Press, New York (1977). Zbl 0357.73011, MR 0559731
Reference: [29] Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics.Springer, Berlin (2004). Zbl 1068.74002, MR 2056350, 10.1007/978-3-662-10388-3
Reference: [30] Truesdell, C., Rajagopal, K. R.: An Introduction to the Mechanics of Fluids.Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (2000). Zbl 0942.76001, MR 1731441, 10.1007/978-0-8176-4846-6
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo