Previous |  Up |  Next

Article

Title: Bifurcation analysis of macroscopic traffic flow model based on the influence of road conditions (English)
Author: Ai, Wenhuan
Author: Zhang, Ting
Author: Liu, Dawei
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 4
Year: 2023
Pages: 499-534
Summary lang: English
.
Category: math
.
Summary: A macroscopic traffic flow model considering the effects of curves, ramps, and adverse weather is proposed, and nonlinear bifurcation theory is used to describe and predict nonlinear traffic phenomena on highways from the perspective of global stability of the traffic system. Firstly, the stability conditions of the model shock wave were investigated using the linear stability analysis method. Then, the long-wave mode at the coarse-grained scale is considered, and the model is analyzed using the reduced perturbation method to obtain the Korteweg-de Vries (KdV) equation of the model in the sub-stable region. In addition, the type of equilibrium points and their stability are discussed by using bifurcation analysis, and a theoretical derivation proves the existence of Hopf bifurcation and saddle-knot bifurcation in the model. Finally, the simulation density spatio-temporal and phase plane diagrams verify that the model can describe traffic phenomena such as traffic congestion and stop-and-go traffic in real traffic, providing a theoretical basis for the prevention of traffic congestion. (English)
Keyword: macro traffic flow
Keyword: curves
Keyword: ramps
Keyword: bifurcation analysis
MSC: 35A35
idZBL: Zbl 07729509
idMR: MR4612745
DOI: 10.21136/AM.2023.0163-22
.
Date available: 2023-07-10T14:15:00Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151707
.
Reference: [1] Ai, W.-H., Shi, Z.-K., Liu, D.-W.: Bifurcation analysis of a speed gradient continuum traffic flow model.Physica A 437 (2015), 418-429. Zbl 1400.90088, MR 3371710, 10.1016/j.physa.2015.06.004
Reference: [2] Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation.Phys. Rev. E (3) 51 (1995), 1035-1042. 10.1103/PhysRevE.51.1035
Reference: [3] Cao, J. F., Han, C. Z., Fang, Y. W.: Nonlinear Systems Theory and Application.Xi'an Jiao Tong University Press, Xi'an (2006), ISBN 7-5605-2140-1\nopunct Chinese.
Reference: [4] Carrillo, F. A., Delgado, J., Saavedra, P., Velasco, R. M., Verduzco, F.: Traveling waves, catastrophes and bifurcations in a generic second order traffic flow model.Int. J. Bifurcation Chaos Appl. Sci. Eng. 23 (2013), Article ID 1350191, 15 pages. Zbl 1284.90012, MR 3158306, 10.1142/S0218127413501915
Reference: [5] Chen, B., Sun, D., Zhou, J., Wong, W., Ding, Z.: A future intelligent traffic system with mixed autonomous vehicles and human-driven vehicles.Inform. Sci. 529 (2020), 59-72. MR 4093031, 10.1016/j.ins.2020.02.009
Reference: [6] Cui, N., Chen, B., Zhang, K., Zhang, Y., Liu, X., Zhou, J.: Effects of route guidance strategies on traffic emissions in intelligent transportation systems.Physica A 513 (2019), 32-44. 10.1016/j.physa.2018.08.009
Reference: [7] Daganzo, C. F., Laval, J. A.: Moving bottlenecks: A numerical method that converges in flows.Transp. Res., Part B 39 (2005), 855-863. 10.1016/j.trb.2004.10.004
Reference: [8] Delgado, J., Saavedra, P.: Global bifurcation diagram for the Kerner-Konhäuser traffic flow model.Int. J. Bifurcation Chaos Appl. Sci. Eng. 25 (2015), Article ID 1550064, 18 pages. Zbl 1317.34074, MR 3349898, 10.1142/S0218127415500649
Reference: [9] Gupta, A. K., Dhiman, I.: Phase diagram of a continuum traffic flow model with a static bottleneck.Nonlinear Dyn. 79 (2015), 663-671. MR 3302725, 10.1007/s11071-014-1693-6
Reference: [10] Gupta, A. K., Katiyar, V. K.: Analyses of shock waves and jams in traffic flow.J. Phys. A, Math. Gen. 38 (2005), 4069-4083. Zbl 1086.90013, MR 2145802, 10.1088/0305-4470/38/19/002
Reference: [11] Gupta, A. K., Katiyar, V. K.: A new anisotropic continuum model for traffic flow.Physica A 368 (2006), 551-559. 10.1016/j.physa.2005.12.036
Reference: [12] Gupta, A. K., Katiyar, V. K.: Phase transition of traffic states with on-ramp.Physica A 371 (2006), 674-682. 10.1016/j.physa.2006.03.061
Reference: [13] Gupta, A. K., Redhu, P.: Jamming transition of a two-dimensional traffic dynamics with consideration of optimal current difference.Phys. Lett., A 377 (2013), 2027-2033. Zbl 1297.90017, MR 3083138, 10.1016/j.physleta.2013.06.009
Reference: [14] Gupta, A. K., Sharma, S.: Nonlinear analysis of traffic jams in an anisotropic continuum model.Chin. Phys. B 19 (2010), Article ID 110503, 9 pages. 10.1088/1674-1056/19/11/110503
Reference: [15] Gupta, A. K., Sharma, S.: Analysis of the wave properties of a new two-lane continuum model with the coupling effect.Chin. Phys. B 21 (2012), Article ID 015201, 15 pages. 10.1088/1674-1056/21/1/015201
Reference: [16] Igarashi, Y., Itoh, K., Nakanishi, K., Ogura, K., Yokokawa, K.: Quasi-solitons in dissipative systems and exactly solvable lattice models.Phys. Rev. Lett. 83 (1999), 718-721. 10.1103/PhysRevLett.83.718
Reference: [17] Igarashi, Y., Itoh, K., Nakanishi, K., Ogura, K., Yokokawa, K.: Bifurcation phenomena in the optimal velocity model for traffic flow.Phys. Rev. E (3) 64 (2001), Article ID 047102. 10.1103/PhysRevE.64.047102
Reference: [18] Jiang, R., Wu, Q., Zhu, Z.: Full velocity difference model for a car-following theory.Phys. Rev. E (3) 64 (2001), Article ID 017101. MR 2998582, 10.1103/PhysRevE.64.017101
Reference: [19] Jiang, R., Wu, Q.-S., Zhu, Z.-J.: A new continuum model for traffic flow and numerical tests.Transp. Res., Part B 36 (2002), 405-419. 10.1016/S0191-2615(01)00010-8
Reference: [20] Kerner, B. S., Konhäuser, P.: Cluster effect in initially homogeneous traffic flow.Phys. Rev. E (3) 48 (1993), 2335-2338. 10.1103/PhysRevE.48.R2335
Reference: [21] Kuznetsov, Y. A.: Bifurcations of equilibria and periodic orbits in $n$-dimensional dynamical systems.Elements of Applied Bifurcation Theory Applied Mathematical Sciences 112. Springer, New York (1998), 151-194. Zbl 0914.58025, MR 1711790, 10.1007/978-0-387-22710-8_5
Reference: [22] Lei, L., Wang, Z., Wu, Y.: Modeling and analyzing for a novel continuum model considering self-stabilizing control on curved road with slope.CMES, Comput. Model. Eng. Sci. 131 (2022), 1815-1830. 10.32604/cmes.2022.019855
Reference: [23] Ling, D., Jian, X. P.: Stability and bifurcation characteristics of a class of nonlinear vehicle following model.J. Traffic and Transportation Engineering and Information 7 (2009), 6-11.
Reference: [24] Ma, G., Ma, M., Liang, S., Wang, Y., Guo, H.: Nonlinear analysis of the car-following model considering headway changes with memory and backward looking effect.Physica A 562 (2021), Article ID 125303, 12 pages. Zbl 07542618, MR 4157710, 10.1016/j.physa.2020.125303
Reference: [25] Ma, G., Ma, M., Liang, S., Wang, Y., Zhang, Y.: An improved car-following model accounting for the time-delayed velocity difference and backward looking effect.Commun. Nonlinear Sci. Numer. Simul. 85 (2020), Article ID 105221, 10 pages. Zbl 1452.65169, MR 4065383, 10.1016/j.cnsns.2020.105221
Reference: [26] Meng, X. P., Yan, L. Y.: Stability analysis in a curved road traffic flow model based on control theory.Asian J. Control 19 (2017), 1844-1853. Zbl 1386.93217, MR 3704494, 10.1002/asjc.1505
Reference: [27] Orosz, G., Wilson, R. E., Krauskopf, B.: Global bifurcation investigation of an optimal velocity traffic model with driver reaction time.Phys. Rev. E (3) 70 (2004), Article ID 026207, 10 pages. MR 2129214, 10.1103/PhysRevE.70.026207
Reference: [28] Redhu, P., Gupta, A. K.: Delayed-feedback control in a Lattice hydrodynamic model.Commun. Nonlinear Sci. Numer. Simul. 27 (2015), 263-270. Zbl 1457.93068, MR 3341560, 10.1016/j.cnsns.2015.03.015
Reference: [29] Zeng, J., Qian, Y., Xu, D., Jia, Z., Huang, Z.: Impact of road bends on traffic flow in a single-lane traffic system.Math. Probl. Eng. 2014 (2014), Article ID 218465, 6 pages. Zbl 1407.90103, MR 3166824, 10.1155/2014/218465
Reference: [30] Zhai, C., Wu, W.: A new car-following model considering driver's characteristics and traffic jerk.Nonlinear Dyn. 93 (2018), 2185-2199. 10.1007/s11071-018-4318-7
Reference: [31] Zhai, C., Wu, W.: Car-following model based delay feedback control method with the gyroidal road.Int. J. Mod. Phys. C 30 (2019), Article ID 1950073, 14 pages. MR 4015821, 10.1142/S0129183119500736
Reference: [32] Zhai, C., Wu, W.: Lattice hydrodynamic model-based feedback control method with traffic interruption probability.Mod. Phys. Lett. B 33 (2019), Article ID 1950273, 16 pages. MR 3993691, 10.1142/S0217984919502737
Reference: [33] Zhai, C., Wu, W.: A modified two-dimensional triangular lattice model under honk environment.Int. J. Mod. Phys. C 31 (2020), Article ID 2050089, 16 pages. MR 4119105, 10.1142/S0129183120500898
Reference: [34] Zhai, C., Wu, W.: Lattice hydrodynamic modeling with continuous self-delayed traffic flux integral and vehicle overtaking effect.Mod. Phys. Lett. B 34 (2020), Article ID 2050071, 15 pages. MR 4068029, 10.1142/S0217984920500712
Reference: [35] Zhai, C., Wu, W.: A macro traffic flow model with headway variation tendency and bounded rationality.Mod. Phys. Lett. B 35 (2021), Article ID 2150054, 15 pages. MR 4202802, 10.1142/S0217984921500548
Reference: [36] Zhai, C., Wu, W.: Designing continuous delay feedback control for lattice hydrodynamic model under cyber-attacks and connected vehicle environment.Commun. Nonlinear Sci. Numer. Simul. 95 (2021), Article ID 105667, 18 pages. Zbl 1456.82635, MR 4192012, 10.1016/j.cnsns.2020.105667
Reference: [37] Zhang, P., Xue, Y., Zhang, Y.-C., Wang, X., Cen, B.-L.: A macroscopic traffic flow model considering the velocity difference between adjacent vehicles on uphill and downhill slopes.Mod. Phys. Lett. B 34 (2020), Article ID 2050217, 18 pages. MR 4128734, 10.1142/S0217984920502176
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo