Previous |  Up |  Next

Article

Keywords:
quantized communication; distributed optimization; alternating direction method of multipliers (ADMM); constrained optimization
Summary:
In this paper, we design a distributed penalty ADMM algorithm with quantized communication to solve distributed convex optimization problems over multi-agent systems. Firstly, we introduce a quantization scheme that reduces the bandwidth limitation of multi-agent systems without requiring an encoder or decoder, unlike existing quantized algorithms. This scheme also minimizes the computation burden. Moreover, with the aid of the quantization design, we propose a quantized penalty ADMM to obtain the suboptimal solution. Furthermore, the proposed algorithm converges to the suboptimal solution with an $O(\frac{1}{k})$ convergence rate for general convex objective functions, and with an R-linear rate for strongly convex objective functions.
References:
[1] Alghunaim, S. A., Ryu, E. K., Yuan, K., Sayed, A. H.: Decentralized proximal gradient algorithms with linear convergence rates. IEEE Trans. Automat. Control 66 (2020), 6, 2787-2794. DOI  | MR 4265114
[2] Boyd, S., Persi, D., Xiao, L.: Fastest mixing Markov chain on a graph. SIAM Rev. 46 (2004), 4, 667-689. DOI  | MR 2124681
[3] Chen, Z., Liang, S.: Distributed aggregative optimization with quantized communication. Kybernetika 58 (2022), 1, 123-144. DOI  | MR 4405950
[4] Chen, Z., Ma, J., Liang, S., Li, L.: Distributed Nash equilibrium seeking under quantization communication. Automatica 141 (2022), 110318. DOI  | MR 4409952
[5] Cheng, S., Liang, S., Fan, Y., Hong, Y.: Distributed gradient tracking for unbalanced optimization with different constraint sets. IEEE Trans. Automat. Control (2022). DOI  | MR 4596660
[6] Dorina, T., Effrosyni, K., Pu, Y., Pascal, F.: Distributed average consensus with quantization refinement. IEEE Trans. Signal Process. 61 (2013), 1, 194-205. DOI  | MR 3008630
[7] Jian, L., Hu, J., Wang, J., Shi, K.: Distributed inexact dual consensus ADMM for network resource allocation. Optimal Control Appl. Methods 40 (2019), 6, 1071-1087. DOI  | MR 4028355
[8] Lei, J., Chen, H., Fang, H.: Primal-dual algorithm for distributed constrained optimization. Systems Control Lett. 96 (2016), 110-117. DOI  | MR 3547663
[9] Lei, J., Yi, P., Shi, G., Brian, D. O. A.: Distributed algorithms with finite data rates that solve linear equations. SIAM J. Optim. 30 (2020), 2, 1191-1222. DOI  | MR 4091883
[10] Li, X., Feng, G., Xie, L.: Distributed proximal algorithms for multi-agent optimization with coupled inequality constraints. IEEE Trans. Automat. Control 66 (2021), 3, 1223-1230. DOI  | MR 4226768
[11] Li, X., Gang, F., Lihua, X.: Distributed proximal point algorithm for constrained optimization over unbalanced graphs. 2019 IEEE 15th International Conference on Control and Automation (ICCA), IEEE, (2019), 824-829. DOI 10.1109/ICCA.2019.8899938
[12] Li, P., Hu, J., Qiu, L., Zhao, Y., Bijoy, K. G.: A distributed economic dispatch strategy for power-water networks. IEEE Trans. Control Network Systems 9 (2022), 1, 356-366. DOI  | MR 4450544
[13] Li, W., Zeng, X., Liang, S., Hong, Y.: Exponentially convergent algorithm design for constrained distributed optimization via nonsmooth approach. IEEE Trans. Automat. Control 67 (2022), 2, 934-940. DOI 10.1109/TAC.2021.3075666 | MR 4376129
[14] Liang, S., Wang, L., George, Y.: Exponential convergence of distributed primal-dual convex optimization algorithm without strong convexity. Automatica 105 (2019), 298-306. DOI  | MR 3942714
[15] Liu, Y., Wu, G., Tian, Z., Ling, Q.: DQC-ADMM: decentralized dynamic ADMM with quantized and censored communications. IEEE Trans. Neural Networks Learn. Systems 33 (2022), 8, 3290-3304. DOI  | MR 4468237
[16] Ma, S.: Alternating proximal gradient method for convex minimization. J. Scientific Computing 68 (2016), 2, 546-572. DOI  | MR 3519192
[17] Ma, X., Yi, P., Chen, J.: Distributed gradient tracking methods with finite data rates. J. Systems Science Complexity 34 (2021), 5, 1927-1952. DOI  | MR 4331654
[18] Pillai, S. U., Torsten, S., Seunghun, Ch.: The Perron-Frobenius theorem: some of its applications. IEEE Signal Process. Magazine 22 (2005), 2, 62-75. DOI 
[19] Qiu, Z., Xie, L., Hong, Y.: Quantized leaderless and leader-following consensus of high-order multi-agent systems with limited data rate. IEEE Trans. Automat. Control 61 (2016), 9, 2432-2447. DOI  | MR 3545063
[20] Shi, W., Ling, Q., Yuan, K., Wu, G., Yin, W.: On the linear convergence of the ADMM in decentralized consensus optimization. IEEE Trans. Signal Process. 62 (2014), 7, 1750-1761. DOI  | MR 3189404
[21] Wang, C., Xu, S., Yuan, D., Zhang, B., Zhang, Z.: Distributed online convex optimization with a bandit primal-dual mirror descent push-sum algorithm. Neurocomputing 497 (2022), 204-215. DOI 
[22] Wang, J., Fu, L., Gu, Y., Li, T.: Convergence of distributed gradient-tracking-based optimization algorithms with random graphs. J. Systems Science Complexity 34 (2021), 4, 1438-1453. DOI  | MR 4298058
[23] Wei, Y., Fang, H., Zeng, X., Chen, J., Panos, P.: A smooth double proximal primal-dual algorithm for a class of distributed nonsmooth optimization problems. IEEE Trans. Automat. Control 65 (2020), 4, 1800-1806. DOI  | MR 4085556
[24] Xie, X., Ling, Q., Lu, P., Xu, W., Zhu, Z.: Evacuate before too late: distributed backup in inter-DC networks with progressive disasters. IEEE Trans. Parallel Distributed Systems 29 (2018), 5, 1058-1074. DOI 
[25] Xu, T., Wu, W.: Accelerated ADMM-based fully distributed inverter-based Volt/Var control strategy for active distribution networks. IEEE Trans. Industr. Inform. 16 (2020), 12, 7532-7543. DOI 
[26] Yi, P., Hong, Y.: Quantized subgradient algorithm and data-rate analysis for distributed optimization. IEEE Trans. Contro Network Systems 1 (2014), 4, 380-392. DOI  | MR 3303147
[27] Yu, W., Liu, H., Zheng, W. Z., Zhu, Y.: Distributed discrete-time convex optimization with nonidentical local constraints over time-varying unbalanced directed graphs. Automatica 134 (2021), 11, 109899. DOI  | MR 4309380
[28] Yuan, D., Hong, Y., Daniel, W. C. H., Xu, S.: Distributed mirror descent for online composite optimization. IEEE Trans. Automat. Control 66 (2021), 2, 714-729. DOI  | MR 4210454
[29] Yuan, D., Xu, S., Zhang, B., Rong, L.: Distributed primal-dual stochastic subgradient algorithms for multi-agent optimization under inequality constraints. Int. J. Robust Nonlinear Control 23 (2013), 15, 1846-1868. DOI  | MR 3126782
[30] Zhang, J., Liu, H., Anthony, M.-Ch. S., Man-Cho, Ling, Q.: A penalty alternating direction method of multipliers for convex composite optimization over decentralized networks. IEEE Trans. Signal Process. 69 (2021), 4282-4295. DOI 10.1109/TSP.2021.3092347 | MR 4302986
[31] Zhao, X., Yi, P., Li, L.: Distributed policy evaluation via inexact ADMM in multi-agent reinforcement learning. Control Theory Technol. 18 (2020), 4, 362-378. DOI  | MR 4188357
[32] Zhou, H., Zeng, X., Hong, Y.: Adaptive exact penalty design for constrained distributed optimization. IEEE Trans. Automat. Control 64 (2019), 11, 4661-4667. DOI  | MR 4030790
Partner of
EuDML logo