[1] Chen, J., Li, J., Wu, H.: 
Fuzzy adaptive leader-following consensus of second-order multiagent systems with imprecise communication topology structure. Int. J. Robust Nonlinear Control 36 (2018), 937-949. 
DOI  | 
MR 3818735[2] Chen, J., Li, J., Yuan, X.: 
Global fuzzy adaptive consensus control of unknown nonlinear multiagent systems. IEEE Trans. Fuzzy Systems 28 (2019), 510-522. 
DOI [3] Chen, K., Wang, J., Zhang, Y., Liu, Z.: 
Second-order consensus of nonlinear multi-agent systems with restricted switching topology and time delay. Nonlinear Dynamics 78 (2014), 881-887. 
DOI  | 
MR 3267676[4] Cui, D., Wu, Y., Xiang, Z.: 
Finite-time adaptive fault-tolerant tracking control for nonlinear switched systems with dynamic uncertainties. Int. J. Robust Nonlinear Control 31 (2021), 2976-2992. 
DOI  | 
MR 4325489[5] Du, H., Cheng, Y., He, Y., Jia, R.: 
Second-order consensus for nonlinear leader-following multi-agent systems via dynamic output feedback control. Int. J. Robust Nonlinear Control 26 (2016), 329-344. 
DOI  | 
MR 3439559[6] Du, H., He, Y., Cheng, Y.: 
Finite-time synchronization of a class of second-order nonlinear multi-agent systems using output feedback control. IEEE Trans. Circuits Systems I: Regular Papers 61 (2014), 1778-1788. 
DOI [7] Feng, X., Yang, Y., Wei, D.: 
Adaptive fully distributed consensus for a class of heterogeneous nonlinear multi-agent systems. Neurocomputing 428 (2021), 12-18. 
DOI  | 
MR 4571538[8] Fu, J., Wang, J.: 
Adaptive consensus tracking of high-order nonlinear multi-agent systems with directed communication graphs. Int. J. Control Automat. Systems 12 (2014), 919-929. 
DOI [9] Fu, J., Wang, J.: 
Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties. Systems Control Lett. 93 (2016), 1-12. 
DOI  | 
MR 3505207[10] Gu, G., Marinovici, L., Lewis, F. L.: 
Consensusability of discrete-time dynamic multiagent systems. IEEE Trans. Automat. Control 57 (2011), 2085-2089. 
DOI  | 
MR 2957180[11] Hua, C., You, X., Guan, X.: 
Adaptive leader-following consensus for second-order time-varying nonlinear multiagent systems. IEEE Trans. Cybernetics 47 (2016), 1532-1539. 
DOI [12] Hua, C. C., You, X., Guan, X. P.: 
Leader-following consensus for a class of high-order nonlinear multi-agent systems. Automatica 73 (2016), 138-144. 
DOI  | 
MR 3552070[13] Huang, J., Wang, Y. Song. W., Wen, C., Li, G.: 
Fully distributed adaptive consensus control of a class of high-order nonlinear systems with a directed topology and unknown control directions. IEEE Trans. Cybernet. 48 (2018), 2349-2356. 
DOI [14] Jin, X.: 
Adaptive iterative learning control for high-order nonlinear multi-agent systems consensus tracking. Systems Control Lett. 89 (2016), 16-23. 
DOI  | 
MR 3459593[15] Li, Q., Jiang, Z.: 
Flocking control of multi-agent systems with application to nonholonomic multi-robots. Kybernetika 45 (2009), 84-100. 
MR 2489582[16] Li, Z., Ren, W., Liu, X., Fu, M.: 
Consensus of multi-agent systems with general linear and lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Trans. Automat. Control 58 (2012), 1786-1791. 
DOI  | 
MR 3072861[17] Li, Z., Wen, G., Duan, Z., Ren, W.: 
Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs. IEEE Trans. Automat. Control 60 (2014), 1152-1157. 
DOI  | 
MR 3340810[18] Li, S., Zou, W., Chen, X., Chen, C., Xiang, Z.: Adaptive fully distributed consensus for a class of second-order nonlinear multi-agent systems with switching networks. Int. J. Control Automat. Systems, under review.
[19] Liu, X., Gao, X., Han, J.: 
Observer-based fault detection for high-order nonlinear multi-agent systems. J. Franklin Inst. 353 (2016), 72-94. 
DOI  | 
MR 3436814[20] Liu, W., Huang, J.: 
Leader-following consensus for linear multiagent systems via asynchronous sampled-data control. IEEE Trans. Automat. Control 65 (2019), 3215-3222. 
DOI  | 
MR 4120588[21] Liu, M., Liu, L.: 
Consensus of heterogeneous second-order nonlinear uncertain multi-agent systems under switching networks. IEEE Trans. Automat. Control 66 (2021), 3331-3338. 
DOI  | 
MR 4284157[22] Liu, Y., Min, H., Wang, S., Liu, Z., Liao, S.: 
Distributed consensus of a class of networked heterogeneous multi-agent systems. J. Franklin Inst. 351 (2014), 1700-1716. 
DOI  | 
MR 3165221[23] Liu, W., Zhou, S., Qi, Y., Wu, X.: 
Leaderless consensus of multi-agent systems with Lipschitz nonlinear dynamics and switching topologies. Neurocomputing 173 (2016), 1322-1329. 
DOI [24] Olfati-Saber, R., Murray, R. M.: 
Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 1520-1533. 
DOI  | 
MR 2086916[25] Qian, C., Lin, W.: 
Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization. Systems Control Lett. 42 (2001), 185-200. 
DOI  | 
MR 2007048[26] Qian, Y., Wu, X., Lü, J., Lu, J. A.: 
Second-order consensus of multi-agent systems with nonlinear dynamics via impulsive control. Neurocomputing 125 (2014), 142-147. 
DOI [27] Ren, C., Nie, R., He, S.: 
Finite-time positiveness and distributed control of Lipschitz nonlinear multi-agent systems. J. Franklin Inst.356 (2019), 8080-8092. 
DOI  | 
MR 4010125[28] Shi, Q., Li, T., Li, J., Chen, C. P., Xiao, Y., Shan, Q.: 
Adaptive leader-following formation control with collision avoidance for a class of second-order nonlinear multi-agent systems. Neurocomputing 350 (2019), 282-290. 
DOI [29] Shi, S., Xu, S., Liu, W., Zhang, B.: 
Global fixed-time consensus tracking of nonlinear uncertain multiagent systems with high-order dynamics. IEEE Trans. Cybernet. 50 (2018), 1530-1540. 
DOI [30] Song, Q., Cao, J., Yu, W.: 
Second-order leader-following consensus of nonlinear multi-agent systems via pinning control. Systems Control Lett. 59 (2010), 553-562. 
DOI  | 
MR 2761212[31] Su, S., Lin, Z., Garcia, A.: 
Distributed synchronization control of multiagent systems with unknown nonlinearities. IEEE Trans. Cybernetics 46 (2015), 325-338. 
DOI [32] Valcher, M. E., Zorzan, I.: 
On the consensus of homogeneous multi-agent systems with arbitrarily switching topology. Automatica 84 (2017), 79-85. 
DOI  | 
MR 3689870[33] Wang, Z., Feng, Y., Zheng, C., Lu, Y., Pan, L.: 
Asynchronous sampling-based leader-following consensus in second-order multi-agent systems. Kybernetika 54 (2018), 61-78. 
DOI  | 
MR 3780956[34] Wang, Q., Fu, J., Wang, J.: 
Fully distributed containment control of high-order multi-agent systems with nonlinear dynamics. Systems Control Lett. 99 (2017), 33-39. 
DOI  | 
MR 3590255[35] Wang, F., Liu, Z., Chen, Z.: 
Distributed containment control for second-order multiagent systems with time delay and intermittent communication. Int. J. Robust Nonlinear Control 28 (2018), 5730-5746. 
DOI  | 
MR 3891517[36] Wang, G., Wang, C., Li, L.: 
Fully distributed low-complexity control for nonlinear strict-feedback multiagent systems with unknown dead-zone inputs. IEEE Trans. Systems Man Cybernet.: Systems 50 (2020), 421-431. 
DOI [37] Wen, G., Yu, Y., Peng, Z., Rahmani, A.: 
Consensus tracking for second-order nonlinear multi-agent systems with switching topologies and a time-varying reference state. Int. J. Control 89 (2016), 2096-2106. 
DOI  | 
MR 3568291[38] Wen, G., Yu, W., Xia, Y., Yu, X., Hu, J.: 
Distributed tracking of nonlinear multiagent systems under directed switching topology: An observer-based protocol. IEEE Trans. Systems Man Cybernet.: Systems 47 (2016), 869-881. 
DOI [39] Xi, J., Fan, Z., Liu, H., Zheng, T.: 
Guaranteed-cost consensus for multiagent networks with Lipschitz nonlinear dynamics and switching topologies. Int. J. Robust Nonlinear Control 28 (2018), 2841-2852. 
DOI  | 
MR 3779425[40] Yang, K., Zou, W., Xiang, Z., Wang, R.: 
Fully distributed consensus for higher-order nonlinear multi-agent systems with unmatched disturbances.. Discrete Continuous Dynamical Systems-S 14 (2021), 1535-1551. 
DOI  | 
MR 4220579[41] You, X., Hua, C., Guan, X.: 
Self-triggered leader-following consensus for high-order nonlinear multiagent systems via dynamic output feedback control. IEEE Trans. Cybernet. 49 (2018), 2002-2010. 
DOI  | 
MR 3975034[42] You, X., Hua, C., Li, K., Jia, X.: 
Fixed-time leader-following consensus for high-order time-varying nonlinear multiagent systems. IEEE Trans. Automat. Control 65 (2020), 5510-5516. 
DOI  | 
MR 4184881[43] Yu, W., Ni, H., Dong, H., Zhang, D.: 
Consensus of heterogeneous multi-agent systems with uncertain DoS attack: Application to mobile stage vehicles. Kybernetika 26 (2020), 278-297. 
DOI  | 
MR 4103718[44] Zhang, Z., Chen, S., Zheng, Y.: 
Fully distributed scaled consensus tracking of high-order multiagent systems with time delays and disturbances. IEEE Trans. Industr. Inform. 18 (2021), 305-314. 
DOI 10.1109/TII.2021.3069207[45] Zhang, H., Lewis, F. L.: 
Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics. Automatica 48 (2012), 1432-1439. 
DOI  | 
MR 2942333[46] Zhang, Y., Li, S.: 
Adaptive near-optimal consensus of high-order nonlinear multi-agent systems with heterogeneity. Automatica 85 (2017), 426-432. 
DOI  | 
MR 3712885[47] Zhang, L., Sun, J., Yang, Q.: 
Event-triggered output consensus for linear multi-agent systems via adaptive distributed observer. Kybernetika 56 (2020), 217-238. 
DOI  | 
MR 4103715[48] Zhao, G., Zhu, M.: 
Pareto optimal multirobot motion planning. IEEE Trans. Automat. Control 66 (2021), 3984-3999. 
DOI  | 
MR 4308453[49] J, Zhu, Tian, Y. P., Kuang, J.: 
On the general consensus protocol of multi-agent systems with double-integrator dynamics. Linear Algebra Appl. 431 (2009), 701-715. 
DOI  | 
MR 2535543[50] Zou, W., Huang, Y., Ahn, C. K., Xiang, Z.: 
Containment control of linear multiagent systems with stochastic disturbances via event-triggered strategies. IEEE Systems J. 14 (2020), 4810-4819. 
DOI [51] Zou, Z., Zhang, J., Wang, Y.: 
Adaptive fault-tolerant tracking control for linear and Lipschitz nonlinear multi-agent systems. IEEE Trans. Industr. Electronics 62 (2014), 3923-3931. 
DOI [52] Zou, W., Zhou, C., Guo, J., Xiang, Z.: 
Global adaptive leader-following consensus for second-order nonlinear multiagent systems with switching topologies. IEEE Trans. Circuits Systems II: Express Briefs 68 (2020), 702-706. 
DOI