Previous |  Up |  Next

Article

Keywords:
complex network; partial topology identification; generalized outer synchronization
Summary:
In this paper, partial topology identification of complex networks is investigated based on synchronization method. We construct the response networks consisting of nodes with sim-pler dynamics than that in the drive networks. By constructing Lyapunov function, sufficient conditions are derived to guarantee partial topology identification by designing suitable controllers and parameters update laws. Several numerical examples are provided to illustrate the effectiveness of the theoretical results.
References:
[1] Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex network. Phys. Rev. X 89 (2014), 3, 032804. DOI 
[2] Boccaletti, S., Bianconi, G., Criado, R., Genio, C. I. Del, Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamical of multilayer networks. Phys. Rep. 554 (2014), 1, 1-122. DOI  | MR 3270140
[3] Chen, A., Lu, J., Lü, J., Yu, S.: Generating hyperchaotic Lü attractor via state feedback control. Physica A: Statist. Mech. Appl. 364 (2006), 103-110. DOI 
[4] Chen, C., Zhou, J., Qu, F., Song, C., Zhu, S.: Identifying partial topology of complex networks with stochastic perturbations and time delay. Comm. Nonlinear Sci. Numer. Simul. 115 (2022), 106779. DOI  | MR 4467179
[5] Domenico, M. D., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M. A., Gómez, S., Arenas, A.: Mathematical formulation of multilayer networks. Phys. Rev. E 3 (2013), 4, 041022. DOI 
[6] Gomze, S., Díaz-Guilera, A., Gomez-Gardeñes, J., Pérez-Vicente, C. J., Moereno, Y., Arenas, A.: Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110 (2013), 2, 028701. DOI 
[7] Guo, S. J., Fu, X. C.: Identification the topology of networks with discrete-time dynamics. J. Phys. A: Math. Theoret.43 (2010), 29, 295101. DOI  | MR 2659781
[8] He, T., Lu, X., Wu, X., Lu, J., Zheng, X.: Optimization-based structure identification of dynamical networks. Phys. A: Statist. Mech. Appl. 392 (2013), 4, 1038-1049. DOI  | MR 3010973
[9] Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N. J., Chung, S., Emili, A., Snyder, M., Greenblatt, J. F., Gerstein, M.: A bayesian networks approach for predicting protein interaction from genomic data. Science 302 (2003), 5644, 449-453. DOI 
[10] Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., Porter, A. M.: Multilayer networks. J. Complex Networks 2 (2014), 3, 203-271. DOI 
[11] Mahmod, G. M., Mahmoud, E. E.: Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems. Nonlinear Dynamics 61 (2010), 141-152. DOI  | MR 2661790
[12] Marwan, N., Romano, M. C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex system. Phys. Rep. 438 (2007), 5 - 6, 237-329. DOI  | MR 2291699
[13] Nabi-Abdolyousefi, M., Mesbahi, M.: Network identification via node knockout. IEEE Trans. Automat. Control 57 (2012), 12, 3214-3219. DOI  | MR 2999201
[14] Qian, Y.: Finite-time topological identification of complex network with time delay and stochastic disturbance. Kybernetika 57 (2021), 3, 534-545. DOI  | MR 4299462
[15] Romano, M. C., Thiel, M., Kurths, J., Grebogi, C.: Estimation of the direction of the coupling by conditional probabilities of recurrence. Phys. Rev. E 76 (2007), 3, 036211. DOI  | MR 2365582
[16] Solé-Ribalta, A., Domenico, M. D., Kouvaris, N. E., Díaz-Guilera, A., Gómez, S., Arenas, A.: Spectral properties of the laplacian of multiplex networks. Phys. Rev. E 88 (2013), 3, 032807. DOI 
[17] Wang, Y., Wu, X., Lu, J.: Topology identification of two-layer unidirectional complex dynamical networks based on auxiliary system approach. In: Chinese Control, Decision Conference 2016, pp. 883-887.
[18] Wang, Y., Wu, X., Lü, J., Lu, J., D'Souza, R. M.: Topology identification in two-layer complex dynamical networks. IEEE Trans. Network Sci. Engrg. 7 (2018), 1, 538-548. DOI  | MR 4104168
[19] Wang, W. X., Yang, R., Lai, Y. C., Kovanis, V., Grebogi, C.: Predicting catastrophes in nonlinear dynamical systems by compressive sensing. Phys. Rev. Lett. 106 (2011), 15, 154101. DOI 
[20] Wu, X.: Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay. Phys. A: Statist. Mech. Appl. 387 (2008), 4, 997-1008. DOI 
[21] Wu, J., Jiao, L.: Synchronization in complex dynamical networks with nonsymmetric coupling. Phys. D 237 (2008), 2487-2489. DOI  | MR 2456649
[22] Wu, H. Y., Wang, L., Zhao, L. H., Wang, J. L.: Topology identification of coupled neural networks with multiple weights. Neurocomputing 457 (2021), 254-264. DOI 
[23] Wu, X., Wang, W., Zheng, W. X.: Inferring topologies of complex networks with hidden variables. Phys. Rev. E 86 (2012), 4, 046106. DOI 
[24] Wu, X., Zheng, W. X., Zhou, J.: Generalized outer synchronization between complex dynamical networks. Chaos: Interdisciplin. J. Nonlinear Sci. 19 (2009), 1, 013109. DOI  | MR 2513757
[25] Wu, X., Zhou, C., Chen, G., Lu, J.: Detecting the topologies of complex networks with stochastic perturbations. Chaos: Interdisciplin. J. Nonlinear Sci. 21 (2011), 4, 043129. DOI 
[26] Wu, J., Zhu, Y., Zheng, Y., Wang, H.: Resilient bipartite consensus of second-order multi-agent systems with event-triggered communication. IEEE Systems J. 17 (2023), 1, 146-153. DOI 
[27] Yu, D., Righero, M., Kocarev, L.: Estimating topology of networks. Phys. Rev. Lett. 97 (2006), 18, 188701. DOI 
[28] Yuan, Z., Zhao, C., W., Wang, X., Di, Z., Lai, Y. C.: Exact controllability of multiplex networka. New J. Phys. 16 (2014), 10, 103036. DOI  | MR 3275862
[29] Zhang, S., Wu, X., Lu, J. A., Feng, H., Lü, J.: Recovering structures of complex dynamical networks based on generalized outer synchronization. IEEE Trans. Circuits Systems l: Regular Papers 61 (2014), 11, 3216-3224. DOI 
[30] Zhao, J., Li, Q., Lu, J. A., Jiang, Z. P.: Topology identification of complex dynamical networks. Nonlinear Sci. 20 (2010), 2, 023119. DOI  | MR 2741902
[31] Zhao, Q., Zheng, Y., Zhu, Y.: Consensus of hybrid multi-agent systems with heterogeneous dynamics. International Journal of Control 56 (2020), 1, 189-212. MR 4176924
[32] Zheng, Y., Zhao, Q., Ma, J., Wang, L.: Second-order consensus of hybrid multi-agent systems. Systems Control Lett. 125 (2019), 51-58. DOI  | MR 3916017
[33] Zhou, L., Liu, J., Zheng, Y., Xiao, F., Xi, J.: Game-based consensus of hybrid multi-agent systems. IEEE Trans. Cybernet. 2022. DOI 
[34] Zhou, J., Lu, J.: Topology identification of weighted complex dynamical networks. Phys. A: Statist. Mech. Appl. 386 (2007), 1, 481-491. DOI  | MR 2585514
[35] Zhu, Y., Li, S., Ma, J., Zheng, Y.: Bipartite consensus in networks of agents with antagonistic interactions and quantization. IEEE Trans. Circuits Syst. II: Express Briefs 65 (2018), 12, 2012-2016. DOI 
[36] Zhu, Y., Zhou, L., Zheng, Y., Liu, J., Chen, S.: Sampled-data based resilient consensus of heterogeneous multiagent systems. Int. J. Robust Nonlinear Control 30 (2020), 17, 7370-7381. DOI  | MR 4175649
[37] Zhu, P., Wei, G., Li, J.: On hybrid consensus-based extended Kalman filtering with random link failures over sensor networks. Kybernetika 386 (2007), 1, 481-491. DOI  | MR 4091790
[38] Zhu, S., Zhou, J., Lu, J.: Identification partial topology of complex dynamical networks via a pinning mechanism. Chaos: Interdiscipl. J. Nonlinear Sci. 28 (2018), 4, 043108. DOI  | MR 3784043
Partner of
EuDML logo