[1] Akar, M., Yüce, S., Şahin, S.:
On the dual hyperbolic numbers and the complex hyperbolic numbers. J. Computer Sci. Comput. Math. 8 (2018), 1-6.
DOI 10.20967/jcscm.2018.01.001
[2] Alfsmann, D.: On families of $2^N$-dimensional hypercomplex algebras suitable for digital signal processing. 14th European Signal Processing Conference IEEE, Piscataway (2006), 1-4.
[4] Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P.:
The Mathematics of Minkowski Space-Time: With an Introduction to Commutative Hypercomplex Numbers. Frontiers in Mathematics. Birkhäuser, Basel (2008).
DOI 10.1007/978-3-7643-8614-6 |
MR 2411620 |
Zbl 1151.53001
[7] Cheng, H. H., Thompson, S.:
Dual polynomials and complex dual numbers for analysis of spatial mechanisms. Design Engineering Technical Conferences and Computers in Engineering. Conference ASME 1996 ASME, Irvine (1996), 19-22.
DOI 10.1115/96-DETC/MECH-1221
[8] Cheng, H. H., Thompson, S.:
Singularity analysis of spatial mechanisms using dual polynomials and complex dual numbers. J. Mech. Des. 121 (1999), 200-205.
DOI 10.1115/1.2829444
[9] Clifford, W. K.:
Mathematical Papers. Chelsea Publishing, New York (1968).
MR 0238662
[11] Cockle, J.:
On systems of algebra involving more than one imaginary; and on equations of the fifth degree. Phil. Mag. (3) 35 (1849), 434-437.
DOI 10.1080/14786444908646384
[13] Dickson, L. E.:
On the theory of numbers and generalized quaternions. Am. J. Math. 46 (1924), 1-16 \99999JFM99999 50.0094.02.
DOI 10.2307/2370658 |
MR 1506514
[14] Fike, J. A., Alonso, J. J.:
The development of hyper-dual numbers for exact second-derivative calculations. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition American Institute of Aeronautics and Astronautics, New York (2011), 1-17.
DOI 10.2514/6.2011-886
[15] Fike, J. A., Alonso, J. J.:
Automatic differentiation through the use of hyper-dual numbers for second derivatives. Recent Advances in Algorithmic Differentiation Lecture Notes in Computational Science and Engineering 87. Springer, Berlin (2012), 163-173.
DOI 10.1007/978-3-642-30023-3_15 |
MR 3241221 |
Zbl 1251.65026
[18] Griffiths, L. W.:
Generalized quaternion algebras and the theory of numbers. Am. J. Math. 50 (1928), 303-314 \99999JFM99999 54.0164.01.
DOI 10.2307/2371761 |
MR 1506671
[19] Gürses, N., Şentürk, G. Y., Yüce, S.:
A study on dual-generalized complex and hyperbolic-generalized complex numbers. Gazi Univ. J. Sci. 34 (2021), 180-194.
DOI 10.35378/gujs.653906
[20] Hamilton, W. R.:
On quaternions; or on a new system of imaginaries in algebra. Phil. Mag. (3) 25 (1844), 10-13.
DOI 10.1080/14786444408644923
[21] Hamilton, W. R.: Lectures on Quaternions. Hodges and Smith, Dublin (1853).
[25] Kantor, I. L., Solodovnikov, A. S.:
Hypercomplex Numbers: An Elementary Introduction to Algebras. Springer, New York (1989).
MR 0996029 |
Zbl 0669.17001
[27] Mamagani, A. B., Jafari, M.: On properties of generalized quaternion algebra. J. Novel Appl. Sci. 2 (2013), 683-689.
[32] Rochon, D., Shapiro, M.:
On algebraic properties of bicomplex and hyperbolic numbers. An. Univ. Oradea, Fasc. Mat. 11 (2004), 71-110.
MR 2127591 |
Zbl 1114.11033
[33] Savin, D., Flaut, C., Ciobanu, C.:
Some properties of the symbol algebras. Carpathian J. Math. 25 (2009), 239-245.
MR 2731200 |
Zbl 1249.17007
[35] Study, E.: Geometrie der Dynamen: Die Zusammensetzung von Kräften und verwandte Gegenstände der Geometrie. B. G. Teubner, Leipzig (1903), German \99999JFM99999 33.0691.01.
[36] Toyoshima, H.: Computationally efficient bicomplex multipliers for digital signal processing. IEICE Trans. Inform. Syst. E81-D (1998), 236-238.