Previous |  Up |  Next

Article

Title: Majority choosability of 1-planar digraph (English)
Author: Xia, Weihao
Author: Wang, Jihui
Author: Cai, Jiansheng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 3
Year: 2023
Pages: 663-673
Summary lang: English
.
Category: math
.
Summary: A majority coloring of a digraph $D$ with $k$ colors is an assignment $\pi \colon V(D) \rightarrow \{1,2,\cdots ,k\}$ such that for every $v\in V(D)$ we have $\pi (w)=\pi (v)$ for at most half of all out-neighbors $w\in N^+(v)$. A digraph $D$ is majority $k$-choosable if for any assignment of lists of colors of size $k$ to the vertices, there is a majority coloring of $D$ from these lists. We prove that if $U(D)$ is a 1-planar graph without a 4-cycle, then $D$ is majority 3-choosable. And we also prove that every NIC-planar digraph is majority 3-choosable. (English)
Keyword: majority choosable
Keyword: OD-3-choosable
Keyword: 1-planar digraph
MSC: 05C15
idZBL: Zbl 07729531
idMR: MR4632851
DOI: 10.21136/CMJ.2023.0170-22
.
Date available: 2023-08-11T14:19:38Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151768
.
Reference: [1] Anastos, M., Lamaison, A., Steiner, R., Szabó, T.: Majority colorings of sparse digraphs.Electron. J. Comb. 28 (2021), Article ID P2.31, 17 pages. Zbl 1465.05057, MR 4272720, 10.37236/10067
Reference: [2] Anholcer, M., Bosek, B., Grytczuk, J.: Majority choosability of digraphs.Electron. J. Comb. 24 (2017), Article ID P3.57, 5 pages. Zbl 1375.05079, MR 3711099, 10.37236/6923
Reference: [3] Borodin, O. V.: A new proof of the 6 color theorem.J. Graph Theory 19 (1995), 507-521. Zbl 0826.05027, MR 1333779, 10.1002/jgt.3190190406
Reference: [4] Czap, J., Šugerek, P.: Drawing graph joins in the plane with restrictions on crossings.Filomat 31 (2017), 363-370. Zbl 1488.05133, MR 3628845, 10.2298/FIL1702363C
Reference: [5] Fabrici, I., Madaras, T.: The structure of 1-planar graphs.Discrete Math. 307 (2007), 854-865. Zbl 1111.05026, MR 2297168, 10.1016/j.disc.2005.11.056
Reference: [6] Gir{ã}o, A., Kittipassorn, T., Popielarz, K.: Generalized majority colourings of digraphs.Comb. Probab. Comput. 26 (2017), 850-855. Zbl 1373.05066, MR 3714995, 10.1017/S096354831700044X
Reference: [7] Knox, F., Šámal, R.: Linear bound for majority colourings of digraphs.Electron. J. Comb. 25 (2018), Article ID P3.29, 4 pages. Zbl 1395.05070, MR 3853881, 10.37236/6762
Reference: [8] Kreutzer, S., Oum, S., Seymour, P., Zypen, D. van der, Wood, D. R.: Majority colourings of digraphs.Electron. J. Comb. 24 (2017), Article ID P2.25, 9 pages. Zbl 1364.05029, MR 3665558, 10.37236/6410
Reference: [9] Wang, W., Lih, K.-W.: Coupled choosability of plane graphs.J. Graph Theory 58 (2008), 27-44. Zbl 1155.05016, MR 2404039, 10.1002/jgt.20292
Reference: [10] Yang, W., Wang, W., Wang, Y.: An improved upper bound for the acyclic chromatic number of 1-planar graphs.Discrete Appl. Math. 283 (2020), 275-291. Zbl 1442.05072, MR 4114897, 10.1016/j.dam.2020.01.010
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo