Previous |  Up |  Next

Article

Title: On optimal parameters involved with two-weighted estimates of commutators of singular and fractional operators with Lipschitz symbols (English)
Author: Pradolini, Gladis
Author: Recchi, Jorgelina
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 3
Year: 2023
Pages: 733-754
Summary lang: English
.
Category: math
.
Summary: We prove two-weighted norm estimates for higher order commutator of singular integral and fractional type operators between weighted $L^p$ and certain spaces that include Lipschitz, BMO and Morrey spaces. We also give the optimal parameters involved with these results, where the optimality is understood in the sense that the parameters defining the corresponding spaces belong to a certain region out of which the classes of weights are satisfied by trivial weights. We also exhibit pairs of nontrivial weights in the optimal region satisfying the conditions required. (English)
Keyword: fractional operator
Keyword: singular integral operator
Keyword: commutator
Keyword: weight
MSC: 42B20
MSC: 42B25
MSC: 42B35
idZBL: Zbl 07729535
idMR: MR4632855
DOI: 10.21136/CMJ.2023.0222-22
.
Date available: 2023-08-11T14:22:08Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151772
.
Reference: [1] Bramanti, M., Cerutti, M. C.: $W_p^{1,2}$ solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients.Commun. Partial Differ. Equations 18 (1993), 1735-1763. Zbl 0816.35045, MR 1239929, 10.1080/03605309308820991
Reference: [2] Bramanti, M., Cerutti, M. C.: Commutators of singular integrals and fractional integrals on homogeneous spaces.Harmonic Analysis and Operator Theory Contemporary Mathematics 189. AMS, Providence (1995), 81-94. Zbl 0837.43013, MR 1347007, 10.1090/conm/189
Reference: [3] Bramanti, M., Cerutti, M. C.: Commutators of singular integrals on homogeneous spaces.Boll. Unione Mat. Ital., VII. Ser., B 10 (1996), 843-883. Zbl 0913.42013, MR 1430157
Reference: [4] Bramanti, M., Cerutti, M. C., Manfredini, M.: $L^p$ estimates for some ultraparabolic operators with discontinuous coefficients.J. Math. Anal. Appl. 200 (1996), 332-354. Zbl 0922.47039, MR 1391154, 10.1006/jmaa.1996.0209
Reference: [5] Chiarenza, F., Frasca, M., Longo, P.: Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients.Ric. Mat. 40 (1991), 149-168. Zbl 0772.35017, MR 1191890
Reference: [6] Chiarenza, F., Frasca, M., Longo, P.: $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients.Trans. Am. Math. Soc. 336 (1993), 841-853. Zbl 0818.35023, MR 1088476, 10.1090/S0002-9947-1993-1088476-1
Reference: [7] Harboure, E., Salinas, O., Viviani, B.: Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces.Trans. Am. Math. Soc. 349 (1997), 235-255. Zbl 0865.42017, MR 1357395, 10.1090/S0002-9947-97-01644-9
Reference: [8] Morvidone, M.: Weighted $\rm BMO_\phi$ spaces and the Hilbert transform.Rev. Unión Mat. Argent. 44 (2003), 1-16. Zbl 1075.42006, MR 2051034
Reference: [9] Muckenhoupt, B., Wheeden, R. L.: Weighted bounded mean oscillation and the Hilbert transform.Stud. Math. 54 (1976), 221-237. Zbl 0318.26014, MR 0399741, 10.4064/sm-54-3-221-237
Reference: [10] Pradolini, G.: A class of pairs of weights related to the boundedness of the fractional integral operator between $L^p$ and Lipschitz spaces.Commentat. Math. Univ. Carol. 42 (2001), 133-152. Zbl 1055.42015, MR 1825378
Reference: [11] Pradolini, G.: Two-weighted norm inequalities for the fractional integral operator between $L^p$ and Lipschitz spaces.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 41 (2001), 147-169. Zbl 0997.42010, MR 1876717
Reference: [12] Pradolini, G., Ramos, W., Recchi, J.: On the optimal numerical parameters related with two weighted estimates for commutators of classical operators and extrapolation results.Collect. Math. 72 (2021), 229-259. Zbl 1457.42029, MR 4204587, 10.1007/s13348-020-00287-1
Reference: [13] Rios, C.: The $L^p$ Dirichlet problem and nondivergence harmonic measure.Trans. Am. Math. Soc. 355 (2003), 665-687. Zbl 1081.35021, MR 1932720, 10.1090/S0002-9947-02-03145-8
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo