Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
periodic complex; orbit category; triangulated hull; derived category; derived equivalence; dg category; Koszul duality
Summary:
We investigate the triangulated hull of orbit categories of the perfect derived category and the bounded derived category of a ring concerning the power of the suspension functor. It turns out that the triangulated hull corresponds to the full subcategory of compact objects of certain triangulated categories of periodic complexes. This specializes to Stai and Zhao's result on the finite dimensional algebra of finite global dimension. As the first application, if $A$, $B$ are flat algebras over a commutative ring and they are derived equivalent, then the corresponding derived categories of $n$-periodic complexes are triangle equivalent. As the second application, we get the periodic version of the Koszul duality.
References:
[1] Avramov, L. L., Buchweitz, R.-O., Iyengar, S. B.: Class and rank of differential modules. Invent. Math. 169 (2007), 1-35. DOI 10.1007/s00222-007-0041-6 | MR 2308849 | Zbl 1153.13010
[2] Avramov, L. L., Buchweitz, R.-O., Iyengar, S. B., Miller, C.: Homology of perfect complexes. Adv. Math. 223 (2010), 1731-1781. DOI 10.1016/j.aim.2009.10.009 | MR 2592508 | Zbl 1186.13006
[3] Beilinson, A. A.: Coherent sheaves on $P^n$ and problems of linear algebra. Funkts. Anal. Prilozh. 12 (1978), 68-69 Russian. MR 0509388 | Zbl 0402.14006
[4] Beilinson, A. A., Bernstein, J., Deligne, P.: Faisceaux pervers. Analysis and Topology on Singular Spaces. I Astérisque 100. Société mathématique de France, Paris (1982), 5-171 French. MR 0751966 | Zbl 0536.14011
[5] Beilinson, A. A., Ginzburg, V., Soergel, W.: Koszul duality patterns in representation theory. J. Am. Math. Soc. 9 (1996), 473-527. DOI 10.1090/S0894-0347-96-00192-0 | MR 1322847 | Zbl 0864.17006
[6] Benson, D. J., Iyengar, S. B., Krause, H.: Stratifying modular representations of finite groups. Ann. Math. (2) 174 (2011), 1643-1684. DOI 10.4007/annals.2011.174.3.6 | MR 2846489 | Zbl 1261.20057
[7] Bernstein, I. N., Gel'fand, I. M., Gel'fand, S. I.: Algebraic vector bundles on $P^n$ and problems of linear algebra. Funkts. Anal. Prilozh. 12 (1978), 66-67 Russian. MR 0509387 | Zbl 0402.14005
[8] Bökstedt, M., Neeman, A.: Homotopy limits in triangulated categories. Compos. Math. 86 (1993), 209-234. MR 1214458 | Zbl 0802.18008
[9] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511608681 | MR 1251956 | Zbl 0909.13005
[10] Buchweitz, R.-O.: Maximal Cohen-Macaulay Modules and Tate Cohomology. Mathematical Surveys and Monographs 262. AMS, Providence (2021). DOI 10.1090/surv/262 | MR 4390795 | Zbl 07498869
[11] Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Mathematical Series 19. Princeton University Press, Princeton (1956). MR 0077480 | Zbl 0075.24305
[12] Chen, X.-W., Liu, J., Wang, R.: Singular equivalences induced by bimodules and quadratic monomial algebras. (to appear) in Algebr. Represent. Theory. DOI 10.1007/s10468-021-10104-3 | MR 4568856
[13] Drinfeld, V.: DG quotients of DG categories. J. Algebra 272 (2004), 643-691. DOI 10.1016/j.jalgebra.2003.05.001 | MR 2028075 | Zbl 1064.18009
[14] Eisenbud, D., Fløystad, G., Schreyer, F.-O.: Sheaf cohomology and free resolutions over exterior algebras. Trans. Am. Math. Soc. 355 (2003), 4397-4426. DOI 10.1090/S0002-9947-03-03291-4 | MR 1990756 | Zbl 1063.14021
[15] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30. Walter De Gruyter, Berlin (2000). DOI 10.1515/9783110803662 | MR 1753146 | Zbl 0952.13001
[16] Happel, D.: On the derived category of a finite-dimensional algebra. Comment. Math. Helv. 62 (1987), 339-389. DOI 10.1007/BF02564452 | MR 0910167 | Zbl 0626.16008
[17] Iyengar, S. B., Krause, H.: Acyclicity versus total acyclicity for complexes over Noetherian rings. Doc. Math. 11 (2006), 207-240. DOI 10.4171/dm/209 | MR 2262932 | Zbl 1119.13014
[18] Iyengar, S. B., Letz, J. C., Liu, J., Pollitz, J.: Exceptional complete intersection maps of local rings. Pac. J. Math. 318 (2022), 275-293. DOI 10.2140/pjm.2022.318.275 | MR 4474363 | Zbl 07578612
[19] Kalck, M., Yang, D.: Derived categories of graded gentle one-cycle algebras. J. Pure Appl. Algebra 222 (2018), 3005-3035. DOI 10.1016/j.jpaa.2017.11.011 | MR 3795632 | Zbl 1410.16012
[20] Keller, B.: Deriving DG categories. Ann. Sci. Éc. Norm. Supér. (4) 27 (1994), 63-102. DOI 10.24033/asens.1689 | MR 1258406 | Zbl 0799.18007
[21] Keller, B.: On the cyclic homology of exact categories. J. Pure Appl. Algebra 136 (1999), 1-56. DOI 10.1016/S0022-4049(97)00152-7 | MR 1667558 | Zbl 0923.19004
[22] Keller, B.: On triangulated orbit categories. Doc. Math. 10 (2005), 551-581. DOI 10.4171/dm/199 | MR 2184464 | Zbl 1086.18006
[23] Keller, B.: Corrections to `On triangulated orbit categories'. Available at {\def\let \relax \brokenlink{ https://webusers.imj-prg.fr/ bernhard.keller/publ/corrTriaOrbit.pdf}}\kern0pt (2009), 5 pages.
[24] Krause, H.: The stable derived category of a Noetherian scheme. Compos. Math. 141 (2005), 1128-1162. DOI 10.1112/S0010437X05001375 | MR 2157133 | Zbl 1090.18006
[25] Krause, H.: Localization theory for triangulated categories. Triangulated Categories London Mathematical Society Lecture Note Series 375. Cambridge University Press, Cambridge (2010), 161-235. DOI 10.1017/CBO9781139107075.005 | MR 2681709 | Zbl 1232.18012
[26] Neeman, A.: The connection between the $K$-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel. Ann. Sci. Éc. Norm. Supér. (4) 25 (1992), 547-566. DOI 10.24033/asens.1659 | MR 1191736 | Zbl 0868.19001
[27] Neeman, A.: The Grothendieck duality theorem via Bousfield's techniques and Brown representability. J. Am. Math. Soc. 9 (1996), 205-236. DOI 10.1090/S0894-0347-96-00174-9 | MR 1308405 | Zbl 0864.14008
[28] Neeman, A.: Triangulated Categories. Annals of Mathematics Studies 148. Princeton University Press, Princeton (2001). DOI 10.1515/9781400837212 | MR 1812507 | Zbl 0974.18008
[29] Orlov, D.: Derived categories of coherent sheaves and triangulated categories of singularities. Algebra, Arithmetic, and Geometry. Volume II Progress in Mathematics 270. Birkhäuser, Boston (2009), 503-531. DOI 10.1007/978-0-8176-4747-6_16 | MR 2641200 | Zbl 1200.18007
[30] Peng, L., Xiao, J.: Root categories and simple Lie algebras. J. Algebra 198 (1997), 19-56. DOI 10.1006/jabr.1997.7152 | MR 1482975 | Zbl 0893.16007
[31] Peng, L., Xiao, J.: Triangulated categories and Kac-Moody algebras. Invent. Math. 140 (2000), 563-603. DOI 10.1007/s002220000062 | MR 1760751 | Zbl 0966.16006
[32] Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc., II. Ser. 39 (1989), 436-456. DOI 10.1112/jlms/s2-39.3.436 | MR 1002456 | Zbl 0642.16034
[33] Rickard, J.: Derived equivalences as derived functors. J. Lond. Math. Soc., II. Ser. 43 (1991), 37-48. DOI 10.1112/jlms/s2-43.1.37 | MR 1099084 | Zbl 0683.16030
[34] Ringel, C. M., Zhang, P.: Representations of quivers over the algebra of dual numbers. J. Algebra 475 (2017), 327-360. DOI 10.1016/j.jalgebra.2016.12.001 | MR 3612474 | Zbl 1406.16010
[35] Stai, T.: The triangulated hull of periodic complexes. Math. Res. Lett. 25 (2018), 199-236. DOI 10.4310/MRL.2018.v25.n1.a9 | MR 3818620 | Zbl 1427.16005
[36] Tang, X., Huang, Z.: Higher differential objects in additive categories. J. Algebra 549 (2020), 128-164. DOI 10.1016/j.jalgebra.2019.12.011 | MR 4050670 | Zbl 1432.18009
[37] Zhao, X.: A note on the equivalence of $m$-periodic derived categories. Sci. China, Math. 57 (2014), 2329-2334. DOI 10.1007/s11425-014-4852-9 | MR 3266493 | Zbl 1304.18029
Partner of
EuDML logo