Title: | Representations of a class of positively based algebras (English) |
Author: | Lin, Shiyu |
Author: | Yang, Shilin |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 73 |
Issue: | 3 |
Year: | 2023 |
Pages: | 811-838 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We investigate the representation theory of the positively based algebra $A_{m,d}$, which is a generalization of the noncommutative Green algebra of weak Hopf algebra corresponding to the generalized Taft algebra. It turns out that $A_{m,d}$ is of finite representative type if $d\leq 4$, of tame type if $d=5$, and of wild type if $d\ge 6.$ In the case when $d\leq 4$, all indecomposable representations of $A_{m,d}$ are constructed. Furthermore, their right cell representations as well as left cell representations of $A_{m,d}$ are described. (English) |
Keyword: | positively based algebra |
Keyword: | indecomposable module |
Keyword: | cell module |
MSC: | 16D80 |
MSC: | 16G60 |
idZBL: | Zbl 07729539 |
idMR: | MR4632859 |
DOI: | 10.21136/CMJ.2023.0254-22 |
. | |
Date available: | 2023-08-11T14:24:31Z |
Last updated: | 2023-09-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151776 |
. | |
Reference: | [1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Volume 1: Techniques of Representation Theory.London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). Zbl 1092.16001, MR 2197389, 10.1017/CBO9780511614309 |
Reference: | [2] Gel'fand, I. M., Ponomarev, V. A.: Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space.Hilbert Space Operators Operator Algebras Colloquia Math. Soc. János Bolyai 5. North-Holland, Amsterdam (1972), 163-237. Zbl 0294.15002, MR 0357428 |
Reference: | [3] Gunnlaugsdóttir, E.: Monoidal structure of the category of $u_{q}^{+}$-modules.Linear Algebra Appl. 365 (2003), 183-199. Zbl 1041.16027, MR 1987337, 10.1016/S0024-3795(02)00484-6 |
Reference: | [4] Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras.Invent. Math. 53 (1979), 165-184. Zbl 0499.20035, MR 0560412, 10.1007/BF01390031 |
Reference: | [5] Kildetoft, D., Mazorchuk, V.: Special modules over positively based algebras.Doc. Math. 21 (2016), 1171-1192. Zbl 1369.16016, MR 3578210, 10.4171/dm/555 |
Reference: | [6] Kudryavtseva, G., Mazorchuk, V.: On multisemigroups.Port. Math. (N.S.) 72 (2015), 47-80. Zbl 1333.20070, MR 3323510, 10.4171/PM/1956 |
Reference: | [7] Li, F.: Weak Hopf algebras and some new solutions of the quantum Yang-Baxter equation.J. Algebra 208 (1998), 72-100. Zbl 0916.16020, MR 1643979, 10.1006/jabr.1998.7491 |
Reference: | [8] Li, L., Zhang, Y.: The Green rings of the generalized Taft Hopf algebras.Hopf Algebras and Tensor Categories Contemporary Mathematics 585. AMS, Providence (2013), 275-288. Zbl 1309.19001, MR 3077243, 10.1090/conm/585/11618 |
Reference: | [9] Lusztig, G.: Irreducible representations of finite classical groups.Invent. Math. 43 (1977), 125-175. Zbl 0372.20033, MR 0463275, 10.1007/BF01390002 |
Reference: | [10] Lusztig, G.: A class of irreducible representations of Weyl group.Indag. Math. 41 (1979), 323-335. Zbl 0435.20021, MR 0546372, 10.1016/1385-7258(79)90036-2 |
Reference: | [11] Lusztig, G.: A class of irreducible representations of Weyl group. II.Indag. Math. 44 (1982), 219-226. Zbl 0511.20034, MR 0662657, 10.1016/S1385-7258(82)80013-9 |
Reference: | [12] Mazorchuk, V., Miemietz, V.: Cell 2-representations of finitary 2-categories.Compos. Math. 147 (2011), 1519-1545. Zbl 1232.17015, MR 2834731, 10.1112/S0010437X11005586 |
Reference: | [13] Nazarova, L. A.: Representations of a tetrad.Math. USSR, Izv. 1 (1969), 1305-1323 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 31 1967 1361-1378. Zbl 0222.16028, MR 0223352, 10.1070/IM1967v001n06ABEH000619 |
Reference: | [14] Su, D., Yang, S.: Representation rings of small quantum groups $\overline{U}_q(sl_2)$.J. Math. Phys. 58 (2017), Article ID 091704, 24 pages. Zbl 1375.81142, MR 3704599, 10.1063/1.4986839 |
Reference: | [15] Su, D., Yang, S.: Green rings of weak Hopf algebras based on generalized Taft algebras.Period. Math. Hung. 76 (2018), 229-242. Zbl 1399.16085, MR 3805598, 10.1007/s10998-017-0221-0 |
Reference: | [16] Yang, S.: Representations of simple pointed Hopf algebras.J. Algebra Appl. 3 (2004), 91-104. Zbl 1080.16043, MR 2047638, 10.1142/S021949880400071X |
. |
Fulltext not available (moving wall 24 months)