Previous |  Up |  Next

Article

Title: Coaxial filters of distributive lattices (English)
Author: Sambasiva Rao, M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 5
Year: 2023
Pages: 397-409
Summary lang: English
.
Category: math
.
Summary: Coaxial filters and strongly coaxial filters are introduced in distributive lattices and some characterization theorems of $pm$-lattices are given in terms of co-annihilators. Some properties of coaxial filters of distributive lattices are studied. The concept of normal prime filters is introduced and certain properties of coaxial filters are investigated. Some equivalent conditions are derived for the class of all strongly coaxial filters to become a sublattice of the filter lattice. (English)
Keyword: filter
Keyword: co-annihilator
Keyword: coaxial filter
Keyword: strongly coaxial filter
Keyword: $pm$-lattice
Keyword: normal prime filter
MSC: 06D99
idZBL: Zbl 07790555
idMR: MR4641954
DOI: 10.5817/AM2023-5-397
.
Date available: 2023-08-15T13:37:49Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151796
.
Reference: [1] Birkhoff, G.: Lattice theory.Third edition American Mathematical Society Colloquium Publications, vol. XXV, American Mathematical Society, Providence, R.I., 1967. Zbl 0153.02501, MR 0227053
Reference: [2] Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra.Springer Verlag, 1981. Zbl 0478.08001, MR 0648287
Reference: [3] Cornish, W.H.: Normal lattices.J. Aust. Math. Soc. 14 (1972), 200–215. MR 0313148, 10.1017/S1446788700010041
Reference: [4] Cornish, W.H.: Annulets and $\alpha $-ideals in distributive lattices.J. Aust. Math. Soc. 15 (1973), 70–77. MR 0344170, 10.1017/S1446788700012775
Reference: [5] Mandelker, M.: Relative annihilators in lattices.Duke Math. J. 37 (1970), 377–386. Zbl 0206.29701, MR 0256951, 10.1215/S0012-7094-70-03748-8
Reference: [6] Pawar, Y.S., Thakare, N.K.: $pm$-lattice.Algebra Universalis 7 (1977), 259–263. MR 0434910, 10.1007/BF02485435
Reference: [7] Rao, M. Sambasiva: Normal filters of distributive lattices.Bull. Sect. Logic Univ. Łódź 41 (3) (2012), 131–143. MR 3066566
Reference: [8] Rao, M. Sambasiva: $\mu $-filters of distributive lattices.Southeast Asian Bull. Math. 40 (2016), 251–264. MR 3496685
Reference: [9] Speed, T.P.: Some remarks on a class of distributive lattices.J. Aust. Math. Soc. 9 (1969), 289–296. MR 0246800, 10.1017/S1446788700007205
.

Files

Files Size Format View
ArchMathRetro_059-2023-5_3.pdf 412.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo