Previous |  Up |  Next

Article

Title: Universality, complexity and asymptotically uniformly smooth Banach spaces (English)
Author: Causey, Ryan M.
Author: Lancien, Gilles
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 64
Issue: 1
Year: 2023
Pages: 1-17
Summary lang: English
.
Category: math
.
Summary: For $1 < p \le \infty$, we show the existence of a Banach space which is both injectively and surjectively universal for the class of all separable Banach spaces with an equivalent $p$-asymptotically uniformly smooth norm. We prove that this class is analytic complete in the class of separable Banach spaces. These results extend previous works by N. J. Kalton, D. Werner and O. Kurka in the case $p=\infty$. (English)
Keyword: asymptotic smoothness in Banach space
Keyword: universality
Keyword: complexity
MSC: 46B03
MSC: 46B06
MSC: 46B20
idZBL: Zbl 07790579
idMR: MR4631787
DOI: 10.14712/1213-7243.2023.015
.
Date available: 2023-08-28T09:36:58Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151800
.
Reference: [1] Argyros S. A., Deliyanni I.: Examples of asymptotic $\ell_{1}$ Banach spaces.Trans. Amer. Math. Soc. 349 (1997), no. 3, 973–995. MR 1390965, 10.1090/S0002-9947-97-01774-1
Reference: [2] Bossard B.: Théorie descriptive des ensembles en géométrie des espaces de Banach.Thèse de doctorat de Mathématiques de l'Université Paris VI, Paris, 1994 (French).
Reference: [3] Bossard B.: A coding of separable Banach space. Analytic and coanalytic families of Banach spaces.Fund. Math. 172 (2002), no. 2, 117–151. MR 1899225, 10.4064/fm172-2-3
Reference: [4] Causey R. M.: Power type asymptotically uniformly smooth and asymptotically uniformly flat norms.Positivity 22 (2018), no. 5, 1197–1221. MR 3863608, 10.1007/s11117-018-0568-3
Reference: [5] Causey R. M., Navoyan K. V.: Factorization of Asplund operators.J. Math. Anal. Appl. 479 (2019), no. 1, 1324–1354. MR 3987087, 10.1016/j.jmaa.2019.06.081
Reference: [6] Dilworth S. J., Kutzarova D., Lancien G., Randrianarivony N. L.: Equivalent norms with the property $(\beta)$ of Rolewicz.Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111 (2017), no. 1, 101–113. MR 3596040, 10.1007/s13398-016-0278-2
Reference: [7] Freeman D., Odell E., Schlumprecht Th., Zsák A.: Banach spaces of bounded Szlenk index. II.Fundam. Math. 205 (2009), no. 2, 162–177. MR 2545450
Reference: [8] Godefroy G.: The isomorphism classes of $l_p$ are Borel.Houston J. Math. 43 (2017), no. 3, 947–951. MR 3739042
Reference: [9] Godefroy G., Kalton N., Lancien G.: Subspaces of $c_0 (\mathbb{N})$ and Lipschitz isomorphisms.Geom. Funct. Anal. 10 (2000), no. 4, 798–820. MR 1791140, 10.1007/PL00001638
Reference: [10] Godefroy G., Saint-Raymond J.: Descriptive complexity of some isomorphism classes of Banach spaces.J. Funct. Anal. 275 (2018), no. 4, 1008–1022. MR 3807784, 10.1016/j.jfa.2018.01.018
Reference: [11] Johnson W. B., Lindenstrauss J., Preiss D., Schechtman G.: Almost Fréchet differentiability of Lipschitz mappings between infinite-dimensional Banach spaces.Proc. London Math. Soc. (3) 84 (2002), no. 3, 711–746. MR 1888429
Reference: [12] Johnson W. B., Zippin M.: Subspaces and quotient spaces of $(\sum G_n)_{l_p}$ and $(\sum G_n)_{c_0}$.Israel. J. Math. 17 (1974), 50–55. MR 0358296, 10.1007/BF02756824
Reference: [13] Kalton N. J., Werner D.: Property $(M)$, $M$-ideals, and almost isometric structure of Banach spaces.J. Reine Angew. Math. 461 (1995), 137–178. MR 1324212
Reference: [14] Kechris A. S.: Classical Descriptive Set Theory.Graduate Texts in Mathematics, 156, Springer, New York, 1995. Zbl 0819.04002, MR 1321597
Reference: [15] Kurka O.: Tsirelson-like spaces and complexity of classes of Banach spaces.Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., RACSAM 112 (2018), no. 4, 1101–1123. MR 3857045, 10.1007/s13398-017-0412-9
Reference: [16] Kurka O.: The isomorphism class of $c_0$ is not Borel.Israel J. Math. 231 (2019), no. 1, 243–268. MR 3960007, 10.1007/s11856-019-1851-0
Reference: [17] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces I. Sequence Spaces.Ergebnisse der Mathematik und ihrer Grenzgebiete, 92, Springer, Berlin, 1977. MR 0500056
Reference: [18] Odell E. W., Schlumprecht Th.: Embedding into Banach spaces with finite dimensional decompositions.Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., RACSAM 100 (2006), no. 1–2, 295–323. MR 2267413
Reference: [19] Prus S.: Nearly uniformly smooth Banach spaces.Boll. Un. Mat. Ital. B (7) 3 (1989), no. 3, 507–521. MR 1010520
Reference: [20] Schechtman G.: On Pelczyński's paper “Universal bases" (Studia Math. 32.(1969)), Israel. J. Math. 22 (1975), no. 3–4, 181–184. MR 0390730
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo