Previous |  Up |  Next

Article

Title: Free locally convex spaces and $L$-retracts (English)
Author: Hidalgo Linares, Rodrigo
Author: Okunev, Oleg
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 64
Issue: 1
Year: 2023
Pages: 19-37
Summary lang: English
.
Category: math
.
Summary: We study the relation of $L$-equivalence defined between Tychonoff spaces, that is, we study the topological isomorphisms of their respective free locally convex spaces. We introduce the concept of an $L$-retract in a Tychonoff space in terms of the existence of a special kind of simultaneous extensions of continuous functions, explore the relation of this concept with the Dugundji extension theorem, and find some conditions that allow us to identify $L$-retracts in various classes of topological spaces. As applications, we present a method for constructing examples of $L$-equivalent mappings and $L$-equivalent spaces and in particular, we show that the properties of being an open mapping or a perfect mapping are not $L$-invariant. (English)
Keyword: free locally convex space
Keyword: $L$-equivalence
Keyword: retraction
MSC: 46A03
idZBL: Zbl 07790580
idMR: MR4631788
DOI: 10.14712/1213-7243.2023.017
.
Date available: 2023-08-28T09:38:48Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151806
.
Reference: [1] Arhangel'skii A. V.: Linear homomorphisms of function spaces.Dokl. Akad. Nauk SSSR 264 (1982), no. 6, 1289–1292 (Russian). MR 0664477
Reference: [2] Arhangel'skiĭ A. V.: Topological Function Spaces.Math. Appl. (Soviet Ser.), 78, Kluwer Academic Publishers Group, Dordrecht, 1992.
Reference: [3] Arhangel'skii A. V.: Paracompactness and Metrization. The Method of Covers in the Classification of Spaces.General Topology, III, Encyclopaedia Math. Sci., 51, Springer, Berlin, 1995. 10.1007/978-3-662-07413-8_1
Reference: [4] Cauty R.: Un espace métrique linéaire qui n'est pas un rétracte absolu.Fund. Math. 146 (1994), no. 1, 85–99 (French. English summary). MR 1305261, 10.4064/fm-146-1-85-99
Reference: [5] Collins P. J., Roscoe A. W.: Criteria for metrizability.Proc. Amer. Math. Soc. 90 (1984), no. 4, 631–640. MR 0733418, 10.1090/S0002-9939-1984-0733418-9
Reference: [6] Engelking R.: General Topology.Sigma Ser. Pure Math., 6, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [7] Flood J.: Free Topological Vector Spaces.Dissertationes Math. (Rozprawy Mat.) 221 (1984), 95 pages. MR 0741750
Reference: [8] Gabriyelyan S. S., Morris S. A.: Free topological vector spaces.Topology Appl. 223 (2017), 30–49. MR 3633732, 10.1016/j.topol.2017.03.006
Reference: [9] Hoshina T., Yamazaki K.: Weak $C$-embedding and $P$-embedding, and product spaces.Topology Appl. 125 (2002), no. 2, 233–247. MR 1933574, 10.1016/S0166-8641(01)00275-9
Reference: [10] Karnik S. M., Willard S.: Natural covers and $R$-quotient maps.Canad. Math. Bull. 25 (1982), no. 4, 456–461. MR 0674562, 10.4153/CMB-1982-065-1
Reference: [11] Michael E.: Some extension theorems for continuous functions.Pacific J. Math. 3 (1953), 789–806. MR 0059541, 10.2140/pjm.1953.3.789
Reference: [12] Okunev O. G.: A method for constructing examples of $M$-equivalent spaces.Seminar on General Topology and Topological Algebra, Moscow, 1988/1989, Topology Appl. 36 (1990), no. 2, 157–171. MR 1068167, 10.1016/0166-8641(90)90006-N
Reference: [13] Okunev O. G.: $M$-equivalence of products.Trudy Moskov. Mat. Obshch. 56 (1995), 192–205, 351 (Russian); translation in Trans. Moscow Math. Soc. (1995), 149–158. MR 1468468
Reference: [14] Schaefer H. H.: Topological Vector Spaces.Graduate Texts in Mathematics, 3, Springer, New York, 1971. Zbl 0983.46002, MR 0342978
Reference: [15] Sennott L. I.: A necessary condition for a Dugundji extension property.Proc. of the 1984 Topology Conf., Auburn, Ala., 1984, Topology Proc. 2 (1977), no. 1, 265–280. MR 0540611
Reference: [16] Uspenskiĭ V. V.: On the topology of a free locally convex space.Dokl. Akad. Nauk SSSR 270 (1983), no. 6, 1334–1337 (Russian). MR 0712944
Reference: [17] Yamazaki K.: Extending pointwise bounded equicontinuous collections of functions.Tsukuba J. Math. 29 (2005), no. 1, 197–213. MR 2162836, 10.21099/tkbjm/1496164899
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo