Title: | Special sets of reals and weak forms of normality on Isbell--Mrówka spaces (English) |
Author: | de Oliveira Rodrigues, Vinicius |
Author: | dos Santos Ronchim, Victor |
Author: | Szeptycki, Paul J. |
Language: | English |
Journal: | Commentationes Mathematicae Universitatis Carolinae |
ISSN: | 0010-2628 (print) |
ISSN: | 1213-7243 (online) |
Volume: | 64 |
Issue: | 1 |
Year: | 2023 |
Pages: | 109-126 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We recall some classical results relating normality and some natural weakenings of normality in $\Psi$-spaces over almost disjoint families of branches in the Cantor tree to special sets of reals like $Q$-sets, $\lambda$-sets and $\sigma$-sets. We introduce a new class of special sets of reals which corresponds to the corresponding almost disjoint family of branches being $\aleph_0$-separated. This new class fits between $\lambda$-sets and perfectly meager sets. We also discuss conditions for an almost disjoint family $\mathcal A$ being potentially almost-normal (pseudonormal), in the sense that $\mathcal A$ is almost-normal (pseudonormal) in some c.c.c. forcing extension. (English) |
Keyword: | Isbell--Mrówka spaces |
Keyword: | almost disjoint families |
Keyword: | almost-normal |
Keyword: | weak $\lambda$-set |
MSC: | 54D15 |
MSC: | 54D80 |
idZBL: | Zbl 07790586 |
idMR: | MR4631794 |
DOI: | 10.14712/1213-7243.2023.014 |
. | |
Date available: | 2023-08-28T09:51:02Z |
Last updated: | 2024-02-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151804 |
. | |
Reference: | [1] Blass A.: Combinatorial cardinal characteristics of the continuum.Handbook of set theory 1,2,3, Springer, Dordrecht, 2010, pages 395–489. MR 2768685 |
Reference: | [2] Brendle J.: Dow’s principle and $Q$-sets.Canad. Math. Bull. 42 (1999), no. 1, 13–24. MR 1695894, 10.4153/CMB-1999-002-2 |
Reference: | [3] Mauldin R. D.: On rectangles and countably generated families.Fund. Math. 95 (1977), no. 2, 129–139. MR 0440497, 10.4064/fm-95-2-129-139 |
Reference: | [4] de Oliveira Rodrigues V., dos Santos Ronchim V.: Almost-normality of Isbell–Mrówka spaces.Topology Appl. 288 (2021), Paper No. 107470, 13 pages. MR 4186077 |
Reference: | [5] Engelking R.: General Topology.Mathematical Monographs, 60, PWN—Polish Scientific Publishers, Warszawa, 1977. Zbl 0684.54001, MR 0500780 |
Reference: | [6] Fleissner W. G., Miller A. W.: On $Q$ sets.Proc. Amer. Math. Soc. 78 (1980), no. 2, 280–284. MR 0550513 |
Reference: | [7] Garcia-Balan S. A., Szeptycki P. J.: Weak normality properties in $\Psi$-spaces.Fund. Math. 258 (2022), no. 2, 137–151. MR 4434347, 10.4064/fm935-11-2021 |
Reference: | [8] Hernández-Hernández F., Hrušák M.: Topology of Mrówka–Isbell spaces.in Pseudocompact Topological Spaces, Springer, Cham, 2018, pages 253–289. MR 3822423 |
Reference: | [9] Hernández-Hernández F., Hrušák M.: $Q$-sets and normality of $\Psi$-spaces.Spring Topology and Dynamical Systems Conf., Topology Proc. 29 (2005), no. 1, 155–165. MR 2182924 |
Reference: | [10] Hrušák M.: Almost Disjoint Families and Topology.in Recent Progress in General Topology III, Atlantis Press, Paris, 2014, pages 601–638. MR 3205494 |
Reference: | [11] Hrušák M., Guzmán O.: $n$-Luzin gaps.Topology Appl. 160 (2013), no. 12, 1364–1374. MR 3072697, 10.1016/j.topol.2013.05.015 |
Reference: | [12] Martin D. A., Solovay R. M.: Internal Cohen extensions.Ann. Math. Logic 2 (1970), no. 2, 143–178. MR 0270904, 10.1016/0003-4843(70)90009-4 |
Reference: | [13] Miller A. W.: On the length of Borel hierarchies.Ann. Math. Logic 16 (1979), no. 3, 233–267. MR 0548475, 10.1016/0003-4843(79)90003-2 |
Reference: | [14] Miller A. W.: Special subsets of the real line.in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 201–233. Zbl 0588.54035, MR 0776624 |
Reference: | [15] Miller A. W.: A MAD $Q$-set.Fund. Math. 178 (2003), no. 3, 271–281. MR 2030486 |
Reference: | [16] Reed G. M.: Set-theoretic problems in Moore spaces.in Open Problems in Topology, North-Holland, Amsterdam, 1990, pages 163–181. MR 1078645 |
Reference: | [17] van Douwen E. K.: The integers and topology.in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 111–167. Zbl 0561.54004, MR 0776622 |
. |
Fulltext not available (moving wall 24 months)