| Title:
             | 
Metric trees in the Gromov--Hausdorff space (English) | 
| Author:
             | 
Ishiki, Yoshito | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
64 | 
| Issue:
             | 
1 | 
| Year:
             | 
2023 | 
| Pages:
             | 
73-82 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Using the wedge sum of metric spaces, for all compact metrizable spaces, we construct a topological embedding of the compact metrizable space into the set of all metric trees in the Gromov--Hausdorff space with finite prescribed values. As its application, we show that the set of all metric trees is path-connected and all its nonempty open subsets have infinite topological dimension. (English) | 
| Keyword:
             | 
metric tree | 
| Keyword:
             | 
Gromov--Hausdorff distance | 
| MSC:
             | 
51F99 | 
| MSC:
             | 
53C23 | 
| idZBL:
             | 
Zbl 07790583 | 
| idMR:
             | 
MR4631791 | 
| DOI:
             | 
10.14712/1213-7243.2023.012 | 
| . | 
| Date available:
             | 
2023-08-28T09:45:43Z | 
| Last updated:
             | 
2025-04-07 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/151805 | 
| . | 
| Reference:
             | 
[1] Berestovskiĭ V. N.: On the Urysohn's $\mathbb{R}$-tree.Sibirsk. Mat. Zh. 60 (2019), no. 1, 14–27 (Russian); translation in Sib. Math. J. 60 (2019), no. 1, 10–19. MR 3919159, 10.33048/smzh.2019.60.102 | 
| Reference:
             | 
[2] Bridson M. R., Haefliger A.: Metric Spaces of Non-positive Curvature.Grundlehren der mathematischen Wissenschaften, 319, Springer, Berlin, 1999. MR 1744486 | 
| Reference:
             | 
[3] Evans S. N.: Probability and Real Trees.Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, 2005, Lecture Notes in Mathematics, 1920, Springer, Berlin, 2008. MR 2351587 | 
| Reference:
             | 
[4] Herron D. A.: Gromov–Hausdorff distance for pointed metric spaces.J. Anal. 24 (2016), no. 1, 1–38. MR 3755806, 10.1007/s41478-016-0001-x | 
| Reference:
             | 
[5] Ishiki Y.: An interpolation of metrics and spaces of metrics.available at arXiv:2003.13227v1 [math.MG] (2020), 23 pages. | 
| Reference:
             | 
[6] Ishiki Y.: Branching geodesics of the Gromov–Hausdorff distance.Anal. Geom. Metr. Spaces 10 (2022), no. 1, 109–128. MR 4462891, 10.1515/agms-2022-0136 | 
| Reference:
             | 
[7] Ishiki Y.: Continua in the Gromov–Hausdorff space.Topology Appl. 312 (2022), Paper No. 108058, 10 pages. MR 4387932, 10.1016/j.topol.2022.108058 | 
| Reference:
             | 
[8] Ishiki Y.: Fractal dimensions in the Gromov–Hausdorff space.available at arXiv: 2110.01881v5 [math.MG] (2022), 24 pages. MR 4387932 | 
| Reference:
             | 
[9] Jansen D.: Notes on pointed Gromov–Hausdorff convergence.available at arXiv: 1703.09595v1 [math.MG] (2017), 48 pages. | 
| Reference:
             | 
[10] Kelly J. L.: General Topology.Graduate Texts in Mathematics, 27, Springer, New York, 1955. MR 0370454 | 
| Reference:
             | 
[11] Mémoli F., Wan Z.: Characterization of Gromov-type geodesics.available at arXiv: 2105.05369v2 [math.MG] (2021), 58 pages. MR 4568095 | 
| Reference:
             | 
[12] Urysohn P.: Beispiel eines nirgends separablen metrischen raumes.Fund. Math. 9 (1927), no. 1, 119–121. 10.4064/fm-9-1-119-121 | 
| . |