Previous |  Up |  Next

Article

Title: Metric trees in the Gromov--Hausdorff space (English)
Author: Ishiki, Yoshito
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 64
Issue: 1
Year: 2023
Pages: 73-82
Summary lang: English
.
Category: math
.
Summary: Using the wedge sum of metric spaces, for all compact metrizable spaces, we construct a topological embedding of the compact metrizable space into the set of all metric trees in the Gromov--Hausdorff space with finite prescribed values. As its application, we show that the set of all metric trees is path-connected and all its nonempty open subsets have infinite topological dimension. (English)
Keyword: metric tree
Keyword: Gromov--Hausdorff distance
MSC: 51F99
MSC: 53C23
idZBL: Zbl 07790583
idMR: MR4631791
DOI: 10.14712/1213-7243.2023.012
.
Date available: 2023-08-28T09:45:43Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151805
.
Reference: [1] Berestovskiĭ V. N.: On the Urysohn's $\mathbb{R}$-tree.Sibirsk. Mat. Zh. 60 (2019), no. 1, 14–27 (Russian); translation in Sib. Math. J. 60 (2019), no. 1, 10–19. MR 3919159, 10.33048/smzh.2019.60.102
Reference: [2] Bridson M. R., Haefliger A.: Metric Spaces of Non-positive Curvature.Grundlehren der mathematischen Wissenschaften, 319, Springer, Berlin, 1999. MR 1744486
Reference: [3] Evans S. N.: Probability and Real Trees.Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, 2005, Lecture Notes in Mathematics, 1920, Springer, Berlin, 2008. MR 2351587
Reference: [4] Herron D. A.: Gromov–Hausdorff distance for pointed metric spaces.J. Anal. 24 (2016), no. 1, 1–38. MR 3755806, 10.1007/s41478-016-0001-x
Reference: [5] Ishiki Y.: An interpolation of metrics and spaces of metrics.available at arXiv:2003.13227v1 [math.MG] (2020), 23 pages.
Reference: [6] Ishiki Y.: Branching geodesics of the Gromov–Hausdorff distance.Anal. Geom. Metr. Spaces 10 (2022), no. 1, 109–128. MR 4462891, 10.1515/agms-2022-0136
Reference: [7] Ishiki Y.: Continua in the Gromov–Hausdorff space.Topology Appl. 312 (2022), Paper No. 108058, 10 pages. MR 4387932, 10.1016/j.topol.2022.108058
Reference: [8] Ishiki Y.: Fractal dimensions in the Gromov–Hausdorff space.available at arXiv: 2110.01881v5 [math.MG] (2022), 24 pages. MR 4387932
Reference: [9] Jansen D.: Notes on pointed Gromov–Hausdorff convergence.available at arXiv: 1703.09595v1 [math.MG] (2017), 48 pages.
Reference: [10] Kelly J. L.: General Topology.Graduate Texts in Mathematics, 27, Springer, New York, 1955. MR 0370454
Reference: [11] Mémoli F., Wan Z.: Characterization of Gromov-type geodesics.available at arXiv: 2105.05369v2 [math.MG] (2021), 58 pages. MR 4568095
Reference: [12] Urysohn P.: Beispiel eines nirgends separablen metrischen raumes.Fund. Math. 9 (1927), no. 1, 119–121. 10.4064/fm-9-1-119-121
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo