Previous |  Up |  Next

Article

Title: More on exposed points and extremal points of convex sets in $\mathbb{R}^n$ and Hilbert space (English)
Author: Barov, Stoyu T.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 64
Issue: 1
Year: 2023
Pages: 63-72
Summary lang: English
.
Category: math
.
Summary: Let ${\mathbb{V}}$ be a separable real Hilbert space, $k \in {\mathbb{N}}$ with $k < \dim {\mathbb{V}}$, and let $B$ be convex and closed in ${\mathbb{V}}$. Let ${\mathcal{P}}$ be a collection of linear $k$-subspaces of ${\mathbb{V}}$. A point $w \in B$ is called exposed by ${\mathcal{P}}$ if there is a $P \in {\mathcal{P}}$ so that $(w + P) \cap B =\{w\}$. We show that, under some natural conditions, $B$ can be reconstituted as the convex hull of the closure of all its exposed by ${\mathcal{P}}$ points whenever ${\mathcal{P}}$ is dense and $G_{\delta}$. In addition, we discuss the question when the set of exposed by some ${\mathcal{P}}$ points forms a $G_{\delta}$-set. (English)
Keyword: convex set
Keyword: extremal point
Keyword: exposed point
Keyword: Hilbert space
Keyword: Grassmann manifold
MSC: 52A07
MSC: 52A20
idZBL: Zbl 07790582
idMR: MR4631790
DOI: 10.14712/1213-7243.2023.018
.
Date available: 2023-08-28T09:44:16Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151799
.
Reference: [1] Asplund E.: A $k$-extreme point is the limit of $k$-exposed points.Israel J. Math. 1 (1963), 161–162. MR 0161222, 10.1007/BF02759703
Reference: [2] Barov S. T.: Smooth convex bodies in ${\mathbb{R}}^n$ with dense union of facets.Topology Proc. 58 (2021), 71–83. MR 4115754
Reference: [3] Barov S., Dijkstra J. J.: On closed sets with convex projections under somewhere dense sets of directions.Proc. Amer. Math. Soc. 137 (2009), no. 7, 2425–2435. MR 2495278, 10.1090/S0002-9939-09-09804-9
Reference: [4] Barov S., Dijkstra J. J.: On closed sets in Hilbert space with convex projections under somewhere dense sets of directions.J. Topol. Anal. 2 (2010), no. 1, 123–143. MR 2646993, 10.1142/S1793525310000252
Reference: [5] Barov S., Dijkstra J. J.: On exposed points and extremal points of convex sets in ${\mathbb{R}}^n$ and Hilbert space.Fund. Math. 232 (2016), no. 2, 117–129. MR 3418884, 10.4064/fm232-2-2
Reference: [6] Choquet G., Corson H., Klee V.: Exposed points of convex sets.Pacific J. Math. 17 (1966), no. 1, 33–43. MR 0198176, 10.2140/pjm.1966.17.33
Reference: [7] Corson H. H.: A compact convex set in $E^3$ whose exposed points are of the first category.Proc. Amer. Math. Soc. 16 (1965), no. 5, 1015–1021. MR 0180917
Reference: [8] Engelking R.: General Topology.Sigma Ser. Pure Math., 6, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [9] Gardner R. J.: Geometric Tomography.Encyclopedia Math. Appl., 58, Cambridge University Press, New York, 2006. MR 2251886
Reference: [10] Grünbaum B.: Convex Polytopes.Pure and Applied Mathematics, 16, Interscience Publishers John Wiley & Sons, New York, 1967. Zbl 1033.52001, MR 0226496
Reference: [11] Kanellopoulos V.: On the geometric structure of convex sets with the RNP.Mathematika 50 (2003), no. 1–2, 73–85. MR 2136363, 10.1112/S0025579300014807
Reference: [12] Klee V. L.: Extremal structure of convex sets. II.Math. Z. 69 (1958), 90–104. MR 0092113, 10.1007/BF01187394
Reference: [13] Köthe G.: Topologische Räume. I.Die Grundlehren der mathematischen Wissenschaften, 107, Springer, Berlin, 1960. MR 0130551
Reference: [14] van Mill J.: The Infinite-Dimensional Topology of Function Spaces.North-Holland Math. Library, 64, North-Holland Publishing Co., Amsterdam, 2001. Zbl 0969.54003, MR 1851014
Reference: [15] Narici L., Beckenstein E.: Topological Vector Spaces.Pure Appl. Math. (Boca Raton), 296, CRC Press, Boca Raton, 2011. MR 2723563
Reference: [16] Straszewicz S.: Über exponierte Punkte abgeschlossener Punktmengen.Fund. Math. 24 (1935), no. 1, 139–143. 10.4064/fm-24-1-139-143
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo