Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
nonlinear advanced equation; nonmonotone argument; oscillatory solution
Summary:
Our purpose is to analyze a first order nonlinear differential equation with advanced arguments. Then, some sufficient conditions for the oscillatory solutions of this equation are presented. Our results essentially improve two conditions in the paper ``Oscillation tests for nonlinear differential equations with several nonmonotone advanced arguments'' by N. Kil\iç, Ö. Öcalan and U. M. Özkan. Also we give an example to illustrate our results.
References:
[1] Braverman E., Chatzarakis G. E., Stavroulakis I. P.: Iterative oscillation tests for differential equations with several nonmonotone arguments. Adv. in Difference Equ. (2016), Paper No. 87, 18 pages. MR 3479781
[2] Chatzarakis G. E., Jadlovská I.: Explicit criteria for the oscillation of differential equations with several arguments. Dynam. Systems Appl. 28 (2019), no. 2, 217–242.
[3] Chatzarakis G. E., Jadlovská I., Li T.: Oscillations of differential equations with non-monotone deviating arguments. Adv. Difference Equ. (2019), Paper No. 233, 20 pages. MR 3963017
[4] Chatzarakis G. E., Li T.: Oscillation of differential equations generated by several deviating arguments. Adv. Difference Equ. (2017), Paper No. 292, 24 pages. MR 3703534
[5] Chatzarakis G. E., Öcalan Ö.: Oscillations of differential equations with several non-monotone advanced arguments. Dyn. Syst. 30 (2015), no. 30, 310–323. DOI 10.1080/14689367.2015.1036007 | MR 3373715
[6] Erbe L. H., Kong Q., Zhang B. G.: Oscillation Theory for Functional-differential Equations. Monogr. Textbooks Pure Appl. Math., 190, Marcel Dekker, New York, 1995.
[7] Fukagai N., Kusano T.: Oscillation theory of first order functional-differential equations with deviating arguments. Ann. Mat. Pura Appl. (4) 136 (1984), 95–117. MR 0765918
[8] Kiliç N., Öcalan Ö., Özkan U. M.: Oscillation tests for nonlinear differential equations with several nonmonotone advanced arguments. Appl. Math. E-Notes 21 (2021), 253–262. MR 4269225
[9] Ladde G. S., Lakshmikantham V., Zhang B. G.: Oscillation Theory of Differential Equations with Deviating Arguments. Monogr. Textbooks Pure Appl. Math., 110, Marcel Dekker, New York, 1987. MR 1017244
[10] Öcalan Ö., Kiliç N., Özkan U. M.: Oscillatory behavior of nonlinear advanced differential equations with a non-monotone argument. Acta Math. Univ. Comenian. (N.S.) 88 (2019), no. 2, 239–246. MR 3984642
[11] Öcalan Ö., Özkan U. M.: Oscillations of dynamic equations on time scales with advanced arguments. Int. J. Dyn. Syst. Differ. Equ. 6 (2016), no. 4, 275–284. MR 3607086
[12] Zhou D.: On some problems on oscillation of functional differential equations of first order. J. Shandong Univ., Nat. Sci. Ed. 25 (1990), 434–442.
Partner of
EuDML logo