Previous |  Up |  Next

Article

Title: Continuity of the non-convex play operator in the space of rectifiable curves (English)
Author: Kopfová, Jana
Author: Recupero, Vincenzo
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 6
Year: 2023
Pages: 727-750
Summary lang: English
.
Category: math
.
Summary: We prove that the vector play operator with a uniformly prox-regular characteristic set of constraints is continuous with respect to the ${BV}$-norm and to the ${BV}$-strict metric in the space of rectifiable curves, i.e., in the space of continuous functions of bounded variation. We do not assume any further regularity of the characteristic set. We also prove that the non-convex play operator is rate independent. (English)
Keyword: evolution variational inequalities
Keyword: play operator
Keyword: sweeping processes
Keyword: functions of bounded variation
Keyword: prox-regular set
MSC: 34A60
MSC: 34G25
MSC: 47J20
MSC: 49J52
MSC: 74C05
DOI: 10.21136/AM.2023.0257-22
.
Date available: 2023-11-23T12:12:41Z
Last updated: 2023-11-24
Stable URL: http://hdl.handle.net/10338.dmlcz/151938
.
Reference: [1] Benabdellah, H.: Existence of solutions to the nonconvex sweeping process.J. Differ. Equations 164 (2000), 286-295. Zbl 0957.34061, MR 1765576, 10.1006/jdeq.1999.3756
Reference: [2] Bounkhel, M., Thibault, L.: Nonconvex sweeping process and prox-regularity in Hilbert space.J. Nonlinear Convex Anal. 6 (2005), 359-374. Zbl 1086.49016, MR 2159846
Reference: [3] Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert.North-Holland Mathematical Studies 5. North-Holland, Amsterdam (1973), French. Zbl 0252.47055, MR 0348562, 10.1016/s0304-0208(08)x7125-7
Reference: [4] Brokate, M., Krejčí, P., Schnabel, H.: On uniqueness in evolution quasivariational inequalities.J. Convex Anal. 11 (2004), 111-130. Zbl 1061.49006, MR 2159467
Reference: [5] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions.Applied Mathematical Sciences 121. Springer, New York (1996). Zbl 0951.74002, MR 1411908, 10.1007/978-1-4612-4048-8
Reference: [6] Castaing, C., Marques, M. D. P. Monteiro: Evolution problems associated with nonconvex closed moving sets with bounded variation.Port. Math. 53 (1996), 73-87. Zbl 0848.35052, MR 1384501
Reference: [7] Clarke, F. H., Stern, R. J., Wolenski, P. R.: Proximal smoothness and the lower-$C^2$ property.J. Convex Anal. 2 (1995), 117-144. Zbl 0881.49008, MR 1363364
Reference: [8] Colombo, G., Goncharov, V. V.: The sweeping processes without convexity.Set-Valued Anal. 7 (1999), 357-374. Zbl 0957.34060, MR 1756914, 10.1023/A:1008774529556
Reference: [9] Colombo, G., Marques, M. D. P. Monteiro: Sweeping by a continuous prox-regular set.J. Differ. Equations 187 (2003), 46-62. Zbl 1029.34052, MR 1946545, 10.1016/S0022-0396(02)00021-9
Reference: [10] Colombo, G., Thibault, L.: Prox-regular sets and applications.Handbook of Nonconvex Analysis and Applications International Press, Somerville (2010), 99-182. Zbl 1221.49001, MR 2768810
Reference: [11] J. Diestel, J. J. Uhl, Jr.: Vector Measures.Mathematical Surveys 15. AMS, Providence (1977). Zbl 0369.46039, MR 0453964, 10.1090/surv/015
Reference: [12] Dinculeanu, N.: Vector Measures.International Series of Monographs in Pure and Applied Mathematics 95. Pergamon Press, Berlin (1967). Zbl 0142.10502, MR 0206190
Reference: [13] Edmond, J. F., Thibault, L.: BV solutions of nonconvex sweeping process differential inclusions with perturbation.J. Differ. Equations 226 (2006), 135-179. Zbl 1110.34038, MR 2232433, 10.1016/j.jde.2005.12.005
Reference: [14] Federer, H.: Curvature measures.Trans. Am. Math. Soc. 93 (1959), 418-491. Zbl 0089.38402, MR 0110078, 10.1090/S0002-9947-1959-0110078-1
Reference: [15] Federer, H.: Geometric Measure Theory.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153. Springer, Berlin (1969). Zbl 0176.00801, MR 0257325, 10.1007/978-3-642-62010-2
Reference: [16] Klein, O., Recupero, V.: Hausdorff metric BV discontinuity of sweeping processes.J. Phys., Conf. Ser. 727 (2016), Article ID 012006, 12 pages. Zbl 1366.46062, MR 3566835, 10.1088/1742-6596/727/1/012006
Reference: [17] Kopfová, J., Recupero, V.: $BV$-norm continuity of sweeping processes driven by a set with constant shape.J. Differ. Equations 261 (2016), 5875-5899. Zbl 1354.34112, MR 3548274, 10.1016/j.jde.2016.08.025
Reference: [18] Krasnosel'skij, M. A., Pokrovskij, A. V.: Systems with Hysteresis.Springer, Berlin (1989). Zbl 0665.47038, MR 0987431, 10.1007/978-3-642-61302-9
Reference: [19] Krejčí, P.: Vector hysteresis models.Eur. J. Appl. Math. 2 (1991), 281-292. Zbl 0754.73015, MR 1123144, 10.1017/S0956792500000541
Reference: [20] Krejčí, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations.GAKUTO International Series. Mathematical Sciences and Applications 8. Gakkotosho, Tokyo (1996). Zbl 1187.35003, MR 2466538
Reference: [21] Krejčí, P., Monteiro, G. A., Recupero, V.: Explicit and implicit non-convex sweeping processes in the space of absolutely continuous functions.Appl. Math. Optim. 84, Suppl. 2 (2021), 1477-1504. Zbl 1495.34087, MR 4356901, 10.1007/s00245-021-09801-8
Reference: [22] Krejčí, P., Monteiro, G. A., Recupero, V.: Non-convex sweeping processes in the space of regulated functions.Commun. Pure Appl. Anal. 21 (2022), 2999-3029. Zbl 07606668, MR 4484114, 10.3934/cpaa.2022087
Reference: [23] Krejčí, P., Roche, T.: Lipschitz continuous data dependence of sweeping processes in BV spaces.Discrete Contin. Dyn. Syst., Ser. B 15 (2011), 637-650. Zbl 1214.49022, MR 2774131, 10.3934/dcdsb.2011.15.637
Reference: [24] Lang, S.: Real and Functional Analysis.Graduate Texts in Mathematics 142. Springer, New York (1993). Zbl 0831.46001, MR 1216137, 10.1007/978-1-4612-0897-6
Reference: [25] Mayergoyz, I. D.: Mathematical Models of Hysteresis.Springer, New York (1991). Zbl 0723.73003, MR 1083150, 10.1007/978-1-4612-3028-1
Reference: [26] Mielke, A., Roubíček, T.: Rate-Independent Systems: Theory and Applications.Applied Mathematical Sciences 193. Springer, New York (2015). Zbl 1339.35006, MR 3380972, 10.1007/978-1-4939-2706-7
Reference: [27] Poliquin, R. A., Rockafellar, R. T., Thibault, L.: Local differentiability of distance functions.Trans. Am. Math. Soc. 352 (2000), 5231-5249. Zbl 0960.49018, MR 1694378, 10.1090/S0002-9947-00-02550-2
Reference: [28] Recupero, V.: The play operator on the rectifiable curves in a Hilbert space.Math. Methods Appl. Sci. 31 (2008), 1283-1295. Zbl 1140.74021, MR 2431427, 10.1002/mma.968
Reference: [29] Recupero, V.: Sobolev and strict continuity of general hysteresis operators.Math. Methods Appl. Sci. 32 (2009), 2003-2018. Zbl 1214.47081, MR 2560936, 10.1002/mma.1124
Reference: [30] Recupero, V.: $BV$ solutions of rate independent variational inequalities.Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 10 (2011), 269-315. Zbl 1229.49012, MR 2856149, 10.2422/2036-2145.2011.2.02
Reference: [31] Recupero, V.: $BV$ continuous sweeping processes.J. Differ. Equations 259 (2015), 4253-4272. Zbl 1322.49014, MR 3369277, 10.1016/j.jde.2015.05.019
Reference: [32] Recupero, V.: Sweeping processes and rate independence.J. Convex Anal. 23 (2016), 921-946. Zbl 1357.34103, MR 3533181
Reference: [33] Recupero, V.: Convex valued geodesics and applications to sweeping processes with bounded retraction.J. Convex Anal. 27 (2020), 535-556. Zbl 1444.34075, MR 4058035
Reference: [34] Venel, J.: A numerical scheme for a class of sweeping processes.Numer. Math. 118 (2011), 367-400. Zbl 1222.65064, MR 2800713, 10.1007/s00211-010-0329-0
Reference: [35] Vial, J.-P.: Strong and weak convexity of sets and functions.Math. Oper. Res. 8 (1983), 231-259. Zbl 0526.90077, MR 0707055, 10.1287/moor.8.2.231
Reference: [36] Visintin, A.: Differential Models of Hysteresis.Applied Mathematical Sciences 111. Springer, Berlin (1994). Zbl 0820.35004, MR 1329094, 10.1007/978-3-662-11557-2
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo