Title:
|
Nonoscillatory solutions of discrete fractional order equations with positive and negative terms (English) |
Author:
|
Alzabut, Jehad |
Author:
|
Grace, Said Rezk |
Author:
|
Selvam, A. George Maria |
Author:
|
Janagaraj, Rajendran |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
148 |
Issue:
|
4 |
Year:
|
2023 |
Pages:
|
461-479 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper aims at discussing asymptotic behaviour of nonoscillatory solutions of the forced fractional difference equations of the form \begin{align} \Delta ^{\gamma }u(\kappa )&+\Theta [\kappa +\gamma ,w(\kappa +\gamma )]\\=&\Phi (\kappa +\gamma )+\Upsilon (\kappa +\gamma )w^{\nu }(\kappa +\gamma ) +\Psi [\kappa +\gamma ,w(\kappa +\gamma )],\quad \kappa \in \mathbb {N}_{1-\gamma },\\ u_{0} =&c_{0}, \end{align} where $\mathbb {N}_{1-\gamma }=\{1-\gamma ,2-\gamma ,3-\gamma ,\cdots \}$, $0<\gamma \leq 1$, $\Delta ^{\gamma }$ is a Caputo-like fractional difference operator. Three cases are investigated by using some salient features of discrete fractional calculus and mathematical inequalities. Examples are presented to illustrate the validity of the theoretical results. (English) |
Keyword:
|
fractional difference equation |
Keyword:
|
nonoscillatory |
Keyword:
|
Caputo fractional difference |
Keyword:
|
forcing term |
MSC:
|
26A33 |
MSC:
|
39A10 |
MSC:
|
39A13 |
MSC:
|
39A21 |
DOI:
|
10.21136/MB.2022.0157-21 |
. |
Date available:
|
2023-11-23T12:34:39Z |
Last updated:
|
2023-11-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151968 |
. |
Reference:
|
[1] Alzabut, J., Abdeljawad, T.: Sufficient conditions for the oscillation of nonlinear fractional difference equations.J. Fract. Calc. Appl. 5 (2014), 177-187. Zbl 07444530, MR 3234107 |
Reference:
|
[2] Alzabut, J., Abdeljawad, T., Alrabaiah, H.: Oscillation criteria for forced and damped nabla fractional difference equations.J. Comput. Anal. Appl. 24 (2018), 1387-1394. MR 3753400 |
Reference:
|
[3] Alzabut, J., Muthulakshmi, V., Özbekler, A., Ad\igüzel, H.: On the oscillation of nonlinear fractional difference equations with damping.Mathematics 7 (2019), Article ID 687, 14 pages. 10.3390/math7080687 |
Reference:
|
[4] Atangana, A., Gómez-Aguilar, J. F.: Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena.Eur. Phys. J. Plus 133 (2018), Article ID 166, 22 pages. 10.1140/epjp/i2018-12021-3 |
Reference:
|
[5] At\icı, F. M., Eloe, P. W.: A transform method in discrete fractional calculus.Int. J. Difference Equ. 2 (2007), 165-176. MR 2493595 |
Reference:
|
[6] At\icı, F. M., Şengül, S.: Modeling with fractional difference equations.J. Math. Anal. Appl. 369 (2010), 1-9. Zbl 1204.39004, MR 2643839, 10.1016/j.jmaa.2010.02.009 |
Reference:
|
[7] Chatzarakis, G. E., Selvam, A. G. M., Janagaraj, R., Miliaras, G. N.: Oscillation criteria for a class of nonlinear discrete fractional order equations with damping term.Math. Slovaca 70 (2020), 1165-1182. Zbl 1479.39010, MR 4156816, 10.1515/ms-2017-0422 |
Reference:
|
[8] Chen, F.: Fixed points and asymptotic stability of nonlinear fractional difference equations.Electron. J. Qual. Theory Differ. Equ. 2011 (2011), Article ID 39, 18 pages. Zbl 1340.26013, MR 2805759, 10.14232/ejqtde.2011.1.39 |
Reference:
|
[9] Elaydi, S. N.: An Introduction to Difference Equations.Undergraduate Texts in Mathematics. Springer, New York (2005). Zbl 1071.39001, MR 2128146, 10.1007/0-387-27602-5 |
Reference:
|
[10] Grace, S. R., Graef, J. R., Tunç, E.: On the boundedness of nonoscillatory solutions of certain fractional differential equations with positive and negative terms.Appl. Math. Lett. 97 (2019), 114-120. Zbl 1425.34012, MR 3957498, 10.1016/J.AML.2019.05.032 |
Reference:
|
[11] Grace, S. R., Zafer, A.: On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations.Eur. Phys. J. Spec. Top. 226 (2017), 3657-3665. MR 3783546, 10.1140/epjst/e2018-00043-1 |
Reference:
|
[12] Graef, J. R., Grace, S. R., Tunç, E.: On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations with positive and negative terms.Opusc. Math. 40 (2020), 227-239. Zbl 1437.34006, MR 4087615, 10.7494/OpMath.2020.40.2.227 |
Reference:
|
[13] Holm, M.: The Theory of Discrete Fractional Calculus: Development and Application.University of Nebraska, Lincoln (2011). MR 2873503 |
Reference:
|
[14] Holte, J. M.: Discrete Gronwall lemma and applications.MAA North Central Section Meeting at the University of North Dakota. Available at http://homepages.gac.edu/ {holte/publications/GronwallLemma.pdf} (2009), 1-8. |
Reference:
|
[15] Ionescu, C., Lopes, A., Copot, D., Machado, J. A. T., Bates, J. H. T.: The role of fractional calculus in modeling biological phenomena: A review.Commun. Nonlinear Sci. Numer. Simul. 51 (2017), 141-159. Zbl 1467.92050, MR 3645874, 10.1016/j.cnsns.2017.04.001 |
Reference:
|
[16] Kumar, D., Baleanu, D.: Editorial.Fractional Calculus and Its Applications in Physics Frontiers in Physics 7. Frontiers Media, London (2019), 1-4. 10.3389/fphy.2019.00081 |
Reference:
|
[17] Selvam, A. G. M., Alzabut, J., Janagaraj, R., Adiguzel, H.: Oscillation analysis for nonlinear discrete fractional order delay and neutral equations with forcing term.Dyn. Syst. Appl. 29 (2020), 327-342. 10.46719/dsa20202929 |
Reference:
|
[18] Selvam, A. G. M., Jacintha, M., Janagaraj, R.: Existence of nonoscillatory solutions of nonlinear neutral delay difference equation of fractional order.Adv. Math. Sci. J. 9 (2020), 4971-4983. 10.37418/amsj.9.7.62 |
Reference:
|
[19] Selvam, A. G. M., Janagaraj, R.: Oscillation criteria of a class of fractional order damped difference equations.Int. J. Appl. Math. 32 (2019), 433-441. 10.12732/ijam.v32i3.5 |
Reference:
|
[20] Selvam, A. G. M., Janagaraj, R.: New oscillation criteria for discrete fractional order forced nonlinear equations.J. Phys., Conf. Ser. 1597 (2020), Article ID 012057, 8 pages. 10.1088/1742-6596/1597/1/012057 |
Reference:
|
[21] Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering.Commun. Nonlinear Sci. Numer. Simul. 64 (2018), 213-231. Zbl 07265270, 10.1016/j.cnsns.2018.04.019 |
. |