Title:
|
On perfect powers in $k$-generalized Pell sequence (English) |
Author:
|
Şiar, Zafer |
Author:
|
Keskin, Refik |
Author:
|
Öztaş, Elif Segah |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
148 |
Issue:
|
4 |
Year:
|
2023 |
Pages:
|
507-518 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $k\geq 2$ and let $(P_{n}^{(k)})_{n\geq 2-k}$ be the $k$-generalized Pell sequence defined by \begin {equation*} P_{n}^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots +P_{n-k}^{(k)} \end {equation*}for $n\geq 2$ with initial conditions \begin {equation*} P_{-(k-2)}^{(k)}=P_{-(k-3)}^{(k)}=\cdots =P_{-1}^{(k)}=P_{0}^{(k)}=0,P_{1}^{(k)}=1. \end {equation*}In this study, we handle the equation $P_{n}^{(k)}=y^{m}$ in positive integers $n$, $m$, $y$, $k$ such that $k,y\geq 2,$ and give an upper bound on $n.$ Also, we will show that the equation $P_{n}^{(k)}=y^{m}$ with $2\leq y\leq 1000$ has only one solution given by $P_{7}^{(2)}=13^{2}.$ (English) |
Keyword:
|
Fibonacci and Lucas numbers |
Keyword:
|
exponential Diophantine equation |
Keyword:
|
linear forms in logarithms |
Keyword:
|
Baker's method |
MSC:
|
11B39 |
MSC:
|
11D61 |
MSC:
|
11J86 |
DOI:
|
10.21136/MB.2022.0033-22 |
. |
Date available:
|
2023-11-23T12:36:35Z |
Last updated:
|
2023-11-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151971 |
. |
Reference:
|
[1] Baker, A., Davenport, H.: The equations $3x^2-2 = y^2$ and $8x^2-7 = z^2$.Q. J. Math., Oxf. II. Ser. 20 (1969), 129-137. Zbl 0177.06802, MR 0248079, 10.1093/qmath/20.1.129 |
Reference:
|
[2] Bravo, J. J., Gómez, C. A., Luca, F.: Powers of two as sums of two $k$-Fibonacci numbers.Miskolc Math. Notes 17 (2016), 85-100. Zbl 1389.11041, MR 3527869, 10.18514/MMN.2016.1505 |
Reference:
|
[3] Bravo, J. J., Herrera, J. L.: Repdigits in generalized Pell sequences.Arch. Math., Brno 56 (2020), 249-262. Zbl 07285963, MR 4173077, 10.5817/AM2020-4-249 |
Reference:
|
[4] Bravo, J. J., Herrera, J. L., Luca, F.: Common values of generalized Fibonacci and Pell sequences.J. Number Theory 226 (2021), 51-71. Zbl 1471.11049, MR 4239716, 10.1016/j.jnt.2021.03.001 |
Reference:
|
[5] Bravo, J. J., Herrera, J. L., Luca, F.: On a generalization of the Pell sequence.Math. Bohem. 146 (2021), 199-213. Zbl 07361099, MR 4261368, 10.21136/MB.2020.0098-19 |
Reference:
|
[6] Bravo, J. J., Luca, F.: Powers of two in generalized Fibonacci sequences.Rev. Colomb. Mat. 46 (2012), 67-79. Zbl 1353.11020, MR 2945671 |
Reference:
|
[7] Bugeaud, Y.: Linear Forms in Logarithms and Applications.IRMA Lectures in Mathematics and Theoretical Physics 28. European Mathematical Society, Zürich (2018). Zbl 1394.11001, MR 3791777, 10.4171/183 |
Reference:
|
[8] Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers.Ann. Math. (2) 163 (2006), 969-1018. Zbl 1113.11021, MR 2215137, 10.4007/annals.2006.163.969 |
Reference:
|
[9] Cohn, J. H. E.: Square Fibonacci numbers, etc.Fibonacci Q. 2 (1964), 109-113. Zbl 0126.07201, MR 0161819 |
Reference:
|
[10] Cohn, J. H. E.: Perfect Pell powers.Glasg. Math. J. 38 (1996), 19-20. Zbl 0852.11014, MR 1373953, 10.1017/S0017089500031207 |
Reference:
|
[11] Weger, B. M. M. de: Algorithms for Diophantine Equations.CWI Tracts 65. Centrum voor Wiskunde en Informatica, Amsterdam (1989). Zbl 0687.10013, MR 1026936 |
Reference:
|
[12] Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport.Q. J. Math., Oxf. II. Ser. 49 (1998), 291-306. Zbl 0911.11018, MR 1645552, 10.1093/qmathj/49.3.291 |
Reference:
|
[13] Kiliç, E., Taşci, D.: The generalized Binet formula, representation and sums of the generalized order-$k$ Pell numbers.Taiwanese J. Math. 10 (2006), 1661-1670. Zbl 1123.11005, MR 2275152, 10.11650/twjm/1500404581 |
Reference:
|
[14] Ljunggren, W.: Zur Theorie der Gleichung $x^2+1=Dy^4$.Avh. Norske Vid. Akad. Oslo 5 (1942), 1-27 German. Zbl 0027.01103, MR 0016375 |
Reference:
|
[15] Matveev, E. M.: An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II.Izv. Math. 64 (2000), 1217-1269 translation from Izv. Ross. Akad. Nauk, Ser. Mat. 64 2000 125-180. Zbl 1013.11043, MR 1817252, 10.1070/IM2000v064n06ABEH000314 |
Reference:
|
[16] Pethő, A.: The Pell sequence contains only trivial perfect powers.Sets, Graphs and Numbers Colloquia Mathematica Societatis János Bolyai 60. North Holland, Amsterdam (1992), 561-568. Zbl 0790.11021, MR 1218218 |
Reference:
|
[17] Sanchez, S. G., Luca, F.: Linear combinations of factorials and $S$-units in a binary recurrence sequence.Ann. Math. Qué. 38 (2014), 169-188. Zbl 1361.11007, MR 3283974, 10.1007/s40316-014-0025-z |
Reference:
|
[18] Şiar, Z., Keskin, R.: On perfect powers in $k$-generalized Pell-Lucas sequence.Available at https://arxiv.org/abs/2209.04190 (2022), 17 pages. |
Reference:
|
[19] Wu, Z., Zhang, H.: On the reciprocal sums of higher-order sequences.Adv. Difference Equ. 2013 (2013), Article ID 189, 8 pages. Zbl 1390.11042, MR 3084191, 10.1186/1687-1847-2013-189 |
. |