Previous |  Up |  Next

Article

Title: Covering energy of posets and its bounds (English)
Author: Bhamre, Vandana P.
Author: Pawar, Madhukar M.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 4
Year: 2023
Pages: 537-553
Summary lang: English
.
Category: math
.
Summary: The concept of covering energy of a poset is known and its McClelland type bounds are available in the literature. In this paper, we establish formulas for the covering energy of a crown with $2n$ elements and a fence with $n$ elements. A lower bound for the largest eigenvalue of a poset is established. Using this lower bound, we improve the McClelland type bounds for the covering energy for some special classes of posets. (English)
Keyword: covering energy of poset
Keyword: eigenvalue
Keyword: spectrum
Keyword: upper bound
Keyword: lower bound
MSC: 05B20
MSC: 05C50
MSC: 06A07
MSC: 06A11
MSC: 06B05
MSC: 06B99
DOI: 10.21136/MB.2022.0029-22
.
Date available: 2023-11-23T12:38:18Z
Last updated: 2023-11-23
Stable URL: http://hdl.handle.net/10338.dmlcz/151973
.
Reference: [1] Adiga, C., Bayad, A., Gutman, I., Srinivas, S. A.: The minimum covering energy of a graph.Kragujevac J. Sci. 34 (2012), 39-56.
Reference: [2] ndağ, Ş. B. Altı, Bozkurt, D.: Lower bounds for the energy of (bipartite) graphs.MATCH Commun. Math. Comput. Chem. 77 (2017), 9-14. Zbl 1466.92242, MR 3645362
Reference: [3] Collatz, L., Sinogowitz, U.: Spektren endlicher Grafen.Abh. Math. Semin. Univ. Hamb. 21 (1957), 63-77 German. Zbl 0077.36704, MR 0087952, 10.1007/BF02941924
Reference: [4] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Application.Academic Press, New York (1980). Zbl 0458.05042, MR 0572262
Reference: [5] Das, K. C., Mojallal, S. A., Gutman, I.: Improving McClelland's lower bounds for energy.MATCH Commun. Math. Comput. Chem. 70 (2013), 663-668. Zbl 1299.05213, MR 3155011
Reference: [6] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order.Cambridge University Press, Cambridge (1990). Zbl 1002.06001, MR 1058437, 10.1017/CBO9780511809088
Reference: [7] Grätzer, G.: General Lattice Theory.Pure and Applied Mathematics 75. Academic Press, New York (1978). Zbl 0436.06001, MR 0509213, 10.1007/978-3-0348-7633-9
Reference: [8] Gutman, I.: The energy of a graph.Ber. Math.-Stat. Sekt. Forschungszent. Graz 103 (1978), 22 pages. Zbl 0402.05040, MR 0525890
Reference: [9] Gutman, I., Furtula, B.: The total $\pi$-electron energy saga.Croat. Chem. Acta 90 (2017), 359-368. 10.5562/cca3189
Reference: [10] Gutman, I., Furtula, B.: Energies of Graphs: Survey, Census, Bibliography.Center for Scientific Research, Kragujevac (2019).
Reference: [11] Gutman, I., Ramane, H. S.: Research on graph energies in 2019.MATCH Commun. Math. Comput. Chem. 84 (2020), 277-292.
Reference: [12] Hückel, E.: Quantentheoretische Beiträge zum Benzolproblem I. Die Electronenkonfiguration des Benzols und verwandter Verbindungen.Z. Phys. 70 (1931), 204-286 German. Zbl 0002.09601, 10.1007/BF01339530
Reference: [13] Indulal, G., Vijayakumar, A.: A note on energy of some graphs.MATCH Commun. Math. Comput. Chem. 59 (2008), 269-274. Zbl 1164.05040, MR 2381442
Reference: [14] Kelly, D., Rival, I.: Crowns, fences, and dismantlable lattices.Can. J. Math. 27 (1974), 1257-1271. Zbl 0271.06003, MR 0417003, 10.4153/CJM-1974-120-2
Reference: [15] Li, X., Shi, Y., Gutman, I.: Graph Energy.Springer, Berlin (2012). Zbl 1262.05100, MR 2953171, 10.1007/978-1-4614-4220-2
Reference: [16] McClelland, B. J.: Properties of the latent roots of a matrix: The estimation of $\pi$-electron energies.J. Chem. Phys. 54 (1971), 640-643. 10.1063/1.1674889
Reference: [17] Pawar, M. M., Bhamare, V. P.: On covering energy of posets.Math. Sci. Int. Research J. 4 (2015), 121-125.
Reference: [18] Pawar, M. M., Bhamre, V. P.: Covering energy of some classes of posets.J. Indian Math. Soc., New Ser. 87 (2020), 193-205. Zbl 1463.06005, MR 4123472, 10.18311/jims/2020/25451
Reference: [19] Pawar, M. M., Bhangale, S. T.: Minimum independent dominating energy of graphs.Asian-Eur. J. Math. 14 (2021), Article 2150127, 14 pages. Zbl 1473.05184, MR 4292510, 10.1142/S1793557121501278
Reference: [20] Rival, I.: Lattices with doubly irreducible elements.Can. Math. Bull. 17 (1974), 91-95. Zbl 0293.06003, MR 0360387, 10.4153/CMB-1974-016-3
Reference: [21] Thakare, N. K., Pawar, M. M., Waphare, B. N.: A structure theorem for dismantlable lattices and enumeration.Period. Math. Hung. 45 (2002), 147-160. Zbl 1026.06003, MR 1955202, 10.1023/A:1022314517291
.

Files

Files Size Format View
MathBohem_148-2023-4_8.pdf 282.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo