Previous |  Up |  Next

Article

Keywords:
covering energy of poset; eigenvalue; spectrum; upper bound; lower bound
Summary:
The concept of covering energy of a poset is known and its McClelland type bounds are available in the literature. In this paper, we establish formulas for the covering energy of a crown with $2n$ elements and a fence with $n$ elements. A lower bound for the largest eigenvalue of a poset is established. Using this lower bound, we improve the McClelland type bounds for the covering energy for some special classes of posets.
References:
[1] Adiga, C., Bayad, A., Gutman, I., Srinivas, S. A.: The minimum covering energy of a graph. Kragujevac J. Sci. 34 (2012), 39-56.
[2] ndağ, Ş. B. Altı, Bozkurt, D.: Lower bounds for the energy of (bipartite) graphs. MATCH Commun. Math. Comput. Chem. 77 (2017), 9-14. MR 3645362 | Zbl 1466.92242
[3] Collatz, L., Sinogowitz, U.: Spektren endlicher Grafen. Abh. Math. Semin. Univ. Hamb. 21 (1957), 63-77 German. DOI 10.1007/BF02941924 | MR 0087952 | Zbl 0077.36704
[4] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Application. Academic Press, New York (1980). MR 0572262 | Zbl 0458.05042
[5] Das, K. C., Mojallal, S. A., Gutman, I.: Improving McClelland's lower bounds for energy. MATCH Commun. Math. Comput. Chem. 70 (2013), 663-668. MR 3155011 | Zbl 1299.05213
[6] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990). DOI 10.1017/CBO9780511809088 | MR 1058437 | Zbl 1002.06001
[7] Grätzer, G.: General Lattice Theory. Pure and Applied Mathematics 75. Academic Press, New York (1978). DOI 10.1007/978-3-0348-7633-9 | MR 0509213 | Zbl 0436.06001
[8] Gutman, I.: The energy of a graph. Ber. Math.-Stat. Sekt. Forschungszent. Graz 103 (1978), 22 pages. MR 0525890 | Zbl 0402.05040
[9] Gutman, I., Furtula, B.: The total $\pi$-electron energy saga. Croat. Chem. Acta 90 (2017), 359-368. DOI 10.5562/cca3189
[10] Gutman, I., Furtula, B.: Energies of Graphs: Survey, Census, Bibliography. Center for Scientific Research, Kragujevac (2019).
[11] Gutman, I., Ramane, H. S.: Research on graph energies in 2019. MATCH Commun. Math. Comput. Chem. 84 (2020), 277-292. MR 4757223
[12] Hückel, E.: Quantentheoretische Beiträge zum Benzolproblem I. Die Electronenkonfiguration des Benzols und verwandter Verbindungen. Z. Phys. 70 (1931), 204-286 German. DOI 10.1007/BF01339530 | Zbl 0002.09601
[13] Indulal, G., Vijayakumar, A.: A note on energy of some graphs. MATCH Commun. Math. Comput. Chem. 59 (2008), 269-274. MR 2381442 | Zbl 1164.05040
[14] Kelly, D., Rival, I.: Crowns, fences, and dismantlable lattices. Can. J. Math. 27 (1974), 1257-1271. DOI 10.4153/CJM-1974-120-2 | MR 0417003 | Zbl 0271.06003
[15] Li, X., Shi, Y., Gutman, I.: Graph Energy. Springer, Berlin (2012). DOI 10.1007/978-1-4614-4220-2 | MR 2953171 | Zbl 1262.05100
[16] McClelland, B. J.: Properties of the latent roots of a matrix: The estimation of $\pi$-electron energies. J. Chem. Phys. 54 (1971), 640-643. DOI 10.1063/1.1674889
[17] Pawar, M. M., Bhamare, V. P.: On covering energy of posets. Math. Sci. Int. Research J. 4 (2015), 121-125.
[18] Pawar, M. M., Bhamre, V. P.: Covering energy of some classes of posets. J. Indian Math. Soc., New Ser. 87 (2020), 193-205. DOI 10.18311/jims/2020/25451 | MR 4123472 | Zbl 1463.06005
[19] Pawar, M. M., Bhangale, S. T.: Minimum independent dominating energy of graphs. Asian-Eur. J. Math. 14 (2021), Article 2150127, 14 pages. DOI 10.1142/S1793557121501278 | MR 4292510 | Zbl 1473.05184
[20] Rival, I.: Lattices with doubly irreducible elements. Can. Math. Bull. 17 (1974), 91-95. DOI 10.4153/CMB-1974-016-3 | MR 0360387 | Zbl 0293.06003
[21] Thakare, N. K., Pawar, M. M., Waphare, B. N.: A structure theorem for dismantlable lattices and enumeration. Period. Math. Hung. 45 (2002), 147-160. DOI 10.1023/A:1022314517291 | MR 1955202 | Zbl 1026.06003
Partner of
EuDML logo