Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
graph; generalized distance matrix; generalized distance eigenvalue; generalized distance spread
Summary:
Let $G$ be a simple connected graph with vertex set $V(G)=\{v_1,v_2,\dots ,v_n \}$ and edge set $E(G)$, and let $d_{v_{i}}$ be the degree of the vertex $v_i$. Let $D(G)$ be the distance matrix and let $T_r(G)$ be the diagonal matrix of the vertex transmissions of $G$. The generalized distance matrix of $G$ is defined as $D_\alpha (G)=\alpha T_r(G)+(1-\alpha )D(G)$, where $0\leq \alpha \leq 1$. Let $\lambda _1(D_{\alpha }(G))\geq \lambda _2(D_{\alpha }(G)) \geq \ldots \geq \lambda _n(D_{\alpha }(G))$ be the generalized distance eigenvalues of $G$, and let $k$ be an integer with $1\leq k\leq n$. We denote by $S_{k}(D_{\alpha }(G))=\lambda _{1}(D_{\alpha }(G)) +\lambda _{2}(D_{\alpha }(G))+\ldots +\lambda _{k}(D_{\alpha }(G))$ the sum of the $k$ largest generalized distance eigenvalues. The generalized distance spread of a graph $G$ is defined as $D_{\alpha }S(G)=\lambda _{1}(D_{\alpha }(G))-\lambda _{n}(D_{\alpha }(G))$. We obtain some bounds on $S_k((D_{\alpha }(G)))$ and $D_{\alpha }S(G)$ of graph $G$, respectively.
References:
[1] Ajtai, M., Komlós, J., Szemerédi, E.: A note on Ramsey numbers. J. Comb. Theory, Ser. A 29 (1980), 354-360. DOI 10.1016/0097-3165(80)90030-8 | MR 0600598 | Zbl 0455.05045
[2] Aouchiche, M., Hansen, P.: Two Laplacians for the distance matrix of a graph. Linear Algebra Appl. 439 (2013), 21-33. DOI 10.1016/j.laa.2013.02.030 | MR 3045220 | Zbl 1282.05086
[3] Aouchiche, M., Hansen, P.: Distance spectra of graphs: A survey. Linear Algebra Appl. 458 (2014), 301-386. DOI 10.1016/j.laa.2014.06.010 | MR 3231823 | Zbl 1295.05093
[4] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs. Universitext. Springer, Berlin (2012). DOI 10.1007/978-1-4614-1939-6 | MR 2882891 | Zbl 1231.05001
[5] Buckley, F., Harary, F.: Distance in Graphs. Addison-Wesley, Redwood (1990). MR 1045632 | Zbl 0688.05017
[6] Cui, S.-Y., He, J.-X., Tian, G.-X.: The generalized distance matrix. Linear Algebra Appl. 563 (2019), 1-23. DOI 10.1016/j.laa.2018.10.014 | MR 3872977 | Zbl 1403.05083
[7] Cui, S.-Y., Tian, G.-X., Zheng, L.: On the generalized distance spectral radius of graphs. Available at https://arxiv.org/abs/1901.07695 (2019), 13 pages. DOI 10.48550/arXiv.1901.07695
[8] Haemers, W. H., Mohammadian, A., Tayfeh-Rezaie, B.: On the sum of Laplacian eigenvalues of graphs. Linear Algebra Appl. 432 (2010), 2214-2221. DOI 10.1016/j.laa.2009.03.038 | MR 2599854 | Zbl 1218.05094
[9] Johnson, C. R., Kumar, R., Wolkowicz, H.: Lower bounds for the spread of a matrix. Linear Algebra Appl. 71 (1985), 161-173. DOI 10.1016/0024-3795(85)90244-7 | MR 0813042 | Zbl 0578.15013
[10] Li, X., Mohapatra, E. N., Rodriguez, R. S.: Grüss-type inequalities. J. Math. Anal. Appl. 267 (2002), 434-443. DOI 10.1006/jmaa.2001.7565 | MR 1888014 | Zbl 1007.26016
[11] Lin, H.: On the sum of $k$ largest distance eigenvalues of graphs. Discrete Appl. Math. 259 (2019), 153-159. DOI 10.1016/j.dam.2018.12.031 | MR 3944596 | Zbl 1407.05151
[12] Merikoski, J. K., Kumar, R.: Characterizations and lower bounds for the spread of a normal matrix. Linear Algebra Appl. 364 (2003), 13-31. DOI 10.1016/S0024-3795(02)00534-7 | MR 1971085 | Zbl 1021.15015
[13] Mirsky, L.: The spread of a matrix. Mathematica, Lond. 3 (1956), 127-130. DOI 10.1112/S0025579300001790 | MR 0081875 | Zbl 0073.00903
[14] Pachpatte, B. G.: Analytic Inequalities: Recent Advances. Atlantis Studies in Mathematics 3. Atlantis Press, Paris (2012). DOI 10.2991/978-94-91216-44-2 | MR 3025304 | Zbl 1238.26003
[15] Parlett, B. N.: The Symmetric Eigenvalue Problem. Classics in Applied Mathematics 20. SIAM, Philadelphia (1998). DOI 10.1137/1.9781611971163 | MR 1490034 | Zbl 0885.65039
[16] Pirzada, S., Ganie, H. A., Alhevaz, A., Baghipur, M.: On spectral spread of generalized distance matrix of a graph. Linear Multilinear Algebra 70 (2022), 2819-2835. DOI 10.1080/03081087.2020.1814194 | MR 4491639 | Zbl 1498.05173
[17] Pirzada, S., Ganie, H. A., Rather, B. A., Shaban, R. Ul: On generalized distance energy of graphs. Linear Algebra Appl. 603 (2020), 1-19. DOI 10.1016/j.laa.2020.05.022 | MR 4107088 | Zbl 1484.05137
[18] Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69 (1947), 17-20. DOI 10.1021/ja01193a005
[19] You, L., Ren, L., Yu, G.: Distance and distance signless Laplacian spread of connected graphs. Discrete Appl. Math. 223 (2017), 140-147. DOI 10.1016/j.dam.2016.12.030 | MR 3627307 | Zbl 1465.05109
[20] Yu, G., Zhang, H., Lin, H., Wu, Y., Shu, J.: Distance spectral spread of a graph. Discrete Appl. Math. 160 (2012), 2474-2478. DOI 10.1016/j.dam.2012.05.015 | MR 2957956 | Zbl 1251.05100
Partner of
EuDML logo