Previous |  Up |  Next

Article

Title: More on the strongly 1-absorbing primary ideals of commutative rings (English)
Author: Yassine, Ali
Author: Nikmehr, Mohammad Javad
Author: Nikandish, Reza
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 1
Year: 2024
Pages: 115-126
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative ring with identity. We study the concept of strongly \hbox {1-absorbing} primary ideals which is a generalization of $n$-ideals and a subclass of $1$-absorbing primary ideals. A proper ideal $I$ of $R$ is called strongly 1-absorbing primary if for all nonunit elements $a,b,c \in R$ such that $abc \in I$, it is either $ab \in I$ or $c \in \sqrt {0}$. Some properties of strongly 1-absorbing primary ideals are studied. Finally, rings $R$ over which every semi-primary ideal is strongly 1-absorbing primary, and rings $R$ over which every strongly \hbox {1-absorbing} primary ideal is prime (or primary) are characterized. Many examples are given to illustrate the obtained results. (English)
Keyword: strongly 1-absorbing primary ideal
Keyword: $n$-ideal
Keyword: primary ideal
Keyword: semi-primary ideal
MSC: 13A15
MSC: 13C05
DOI: 10.21136/CMJ.2024.0525-22
.
Date available: 2024-03-13T10:05:09Z
Last updated: 2024-03-18
Stable URL: http://hdl.handle.net/10338.dmlcz/152271
.
Reference: [1] Almahdi, F. A. A., Bouba, E. M., Koam, A. N. A.: On strongly 1-absorbing primary ideals of commutative rings.Bull. Korean Math. Soc. 57 (2020), 1205-1213. Zbl 1454.13004, MR 4155008, 10.4134/BKMS.b190877
Reference: [2] Anderson, D. D., Winders, M.: Idealization of a module.J. Commut. Algebra 1 (2009), 3-56. Zbl 1194.13002, MR 2462381, 10.1216/JCA-2009-1-1-3
Reference: [3] Badawi, A.: On 2-absorbing ideals of commutative rings.Bull. Aust. Math. Soc. 75 (2007), 417-429. Zbl 1120.13004, MR 2331019, 10.1017/S0004972700039344
Reference: [4] Badawi, A., Tekir, U., Yetkin, E.: On 2-absorbing primary ideals in commutative rings.Bull. Korean Math. Soc. 51 (2014), 1163-1173. Zbl 1308.13001, MR 3248714, 10.4134/BKMS.2014.51.4.1163
Reference: [5] Badawi, A., Yetkin, E.: On 1-absorbing primary ideals of commutative rings.J. Algebra Appl. 19 (2020), Article ID 2050111, 12 pages. Zbl 1440.13008, MR 4120088, 10.1142/S021949882050111X
Reference: [6] Beddani, C., Messirdi, W.: 2-prime ideals and their applications.J. Algebra Appl. 15 (2016), Article ID 1650051, 11 pages. Zbl 1338.13038, MR 3454713, 10.1142/S0219498816500511
Reference: [7] R. W. Gilmer, Jr.: Rings in which semi-primary ideals are primary.Pac. J. Math. 12 (1962), 1273-1276. Zbl 0118.27201, MR 0158898, 10.2140/pjm.1962.12.1273
Reference: [8] R. W. Gilmer, Jr.: Extension of results concerning rings in which semi-primary ideals are primary.Duke Math. J. 31 (1964), 73-78. Zbl 0122.29002, MR 0162816, 10.1215/S0012-7094-64-03106-0
Reference: [9] R. W. Gilmer, Jr., J. L. Mott: Multiplication rings as rings in which ideals with prime radical are primary.Trans. Am. Math. Soc. 114 (1965), 40-52. Zbl 0136.02402, MR 0171803, 10.1090/S0002-9947-1965-0171803-X
Reference: [10] Krull, W.: Idealtheorie.Ergebnisse der Mathematik und ihrer Grenzgebiete 46. Springer, Berlin (1968), German. Zbl 0155.36401, MR 0229623, 10.1007/978-3-642-87033-0
Reference: [11] Lam, T. Y.: Exercises in Classical Ring Theory.Problem Books in Mathematics. Springer, New York (1995). Zbl 0823.16001, MR 1323431, 10.1007/978-1-4757-3987-9
Reference: [12] Leerawat, U., Somsup, C.: Semicommutative involution rings.J. Discrete Math. Sci. Cryptography 24 (2021), 1785-1791. Zbl 1487.13028, MR 4319150, 10.1080/09720529.2021.1936745
Reference: [13] McCoy, N. H.: Rings and Ideals.The Carus Mathematical Monographs 8. Mathematical Association of America, Washington (1948). Zbl 0041.36406, MR 0026038, 10.5948/9781614440086
Reference: [14] Nikandish, R., Nikmehr, M. J., Yassine, A.: More on the 2-prime ideals of commutative rings.Bull. Korean Math. Soc. 57 (2020), 117-126. Zbl 1440.13018, MR 4060186, 10.4134/BKMS.b190094
Reference: [15] Sharp, R. Y.: Steps in Commutative Algebra.London Mathematical Society Student Texts 51. Cambridge University Press, Cambridge (2000). Zbl 0969.13001, MR 1817605, 10.1017/CBO9780511623684
Reference: [16] Tamekkante, M., Bouba, E. M.: $(2,n)$-ideals of commutative rings.J. Algebra Appl. 18 (2019), Article ID 1950103, 12 pages. Zbl 1412.13005, MR 3954657, 10.1142/S0219498819501032
Reference: [17] Tekir, U., Koc, S., Oral, K. H.: $n$-ideals of commutative rings.Filomat 31 (2017), 2933-2941. Zbl 1488.13016, MR 3639382, 10.2298/FIL1710933T
Reference: [18] Yassine, A., Nikmehr, M. J., Nikandish, R.: On 1-absorbing prime ideals of commutative rings.J. Algebra Appl. 20 (2021), Article ID 2150175, 12 pages. Zbl 1479.13006, MR 4326079, 10.1142/S0219498821501759
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo