Previous |  Up |  Next

Article

Title: Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source (English)
Author: Zhao, Xiangdong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 1
Year: 2024
Pages: 127-151
Summary lang: English
.
Category: math
.
Summary: We study the chemotaxis system with singular sensitivity and logistic-type source: $u_t=\Delta u-\chi \nabla \cdot (u \nabla v/ v) +ru-\mu u^k$, $0=\Delta v-v+u$ under the non-flux boundary conditions in a smooth bounded domain $\Omega \subset \mathbb {R}^n$, $\chi ,r,\mu >0$, $k>1$ and $n\ge 1$. It is shown with $k\in (1,2)$ that the system possesses a global generalized solution for $n\ge 2$ which is bounded when $\chi >0$ is suitably small related to $r>0$ and the initial datum is properly small, and a global bounded classical solution for $n=1$. (English)
Keyword: chemotaxis
Keyword: singular sensitivity
Keyword: global solvability
MSC: 35B45
MSC: 35K55
MSC: 92C17
DOI: 10.21136/CMJ.2023.0544-22
.
Date available: 2024-03-13T10:05:41Z
Last updated: 2024-03-18
Stable URL: http://hdl.handle.net/10338.dmlcz/152272
.
Reference: [1] Black, T.: Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity.Discrete Contin. Dyn. Syst., Ser. S 13 (2020), 119-137. Zbl 1439.35486, MR 4043685, 10.3934/dcdss.2020007
Reference: [2] Ding, M., Wang, W., Zhou, S.: Global existence of solutions to a fully parabolic chemotaxis system with singular sensitivity and logistic source.Nonlinear Anal., Real World Appl. 49 (2019), 286-311. Zbl 1437.35118, MR 3936798, 10.1016/j.nonrwa.2019.03.009
Reference: [3] Fujie, K.: Boundedness in a fully parabolic chemotaxis system with singular sensitivity.J. Math. Anal. Appl. 424 (2015), 675-684. Zbl 1310.35144, MR 3286587, 10.1016/j.jmaa.2014.11.045
Reference: [4] Fujie, K., Senba, T.: Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity.Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 81-102. Zbl 1330.35051, MR 3426833, 10.3934/dcdsb.2016.21.81
Reference: [5] Fujie, K., Senba, T.: Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity.Nonlinearity 29 (2016), 2417-2450. Zbl 1383.35102, MR 3538418, 10.1088/0951-7715/29/8/2417
Reference: [6] Fujie, K., Winkler, M., Yokota, T.: Blow-up prevention by logistic sources in a parabolic- elliptic Keller-Segel system with singular sensitivity.Nonlinear Anal., Theory Methods Appl., Ser. A 109 (2014), 56-71. Zbl 1297.35051, MR 3247293, 10.1016/j.na.2014.06.017
Reference: [7] Fujie, K., Winkler, M., Yokota, T.: Boundedness of solutions to parabolic-elliptic Keller- Segel systems with signal-dependent sensitivity.Math. Methods Appl. Sci. 38 (2015), 1212-1224. Zbl 1329.35011, MR 3338145, 10.1002/mma.3149
Reference: [8] Keller, E. F., Segel, L. A.: Initiation of slime mold aggregation viewed as an instability.J. Theor. Biol. 26 (1970), 399-415. Zbl 1170.92306, MR 3925816, 10.1016/0022-5193(70)90092-5
Reference: [9] Kurt, H. I., Shen, W.: Finite-time blow-up prevention by logistic source in parabolic-elliptic chemotaxis models with singular sensitivity in any dimensional setting.SIAM J. Math. Anal. 53 (2021), 973-1003. Zbl 1455.35269, MR 4212880, 10.1137/20M1356609
Reference: [10] Lankeit, J.: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source.J. Differ. Equations 258 (2015), 1158-1191. Zbl 1319.35085, MR 3294344, 10.1016/j.jde.2014.10.016
Reference: [11] Lankeit, J., Winkler, M.: A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: Global solvability for large nonradial data.NoDEA, Nonlinear Differ. Equ. Appl. 24 (2017), Article ID 49, 33 pages. Zbl 1373.35166, MR 3674184, 10.1007/s00030-017-0472-8
Reference: [12] Nagai, T., Senba, T.: Behavior of radially symmetric solutions of a system related to chemotaxis.Nonlinear Anal., Theory Methods Appl. 30 (1997), 3837-3842. Zbl 0891.35014, MR 1602939, 10.1016/S0362-546X(96)00256-8
Reference: [13] Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attractor for a chemotaxis-growth system of equations.Nonlinear Anal., Theory Methods Appl., Ser. A 51 (2002), 119-144. Zbl 1005.35023, MR 1915744, 10.1016/S0362-546X(01)00815-X
Reference: [14] Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel equations.Funkc. Ekvacioj, Ser. Int. 44 (2001), 441-469. Zbl 1145.37337, MR 1893940
Reference: [15] Stinner, C., Surulescu, C., Winkler, M.: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion.SIAM J. Math. Anal. 46 (2014), 1969-2007. Zbl 1301.35189, MR 3216646, 10.1137/13094058X
Reference: [16] Tao, Y., Winkler, M.: Persistence of mass in a chemotaxis system with logistic source.J. Differ. Equations 259 (2015), 6142-6161. Zbl 1321.35084, MR 3397319, 10.1016/j.jde.2015.07.019
Reference: [17] Tello, J. I., Winkler, M.: A chemotaxis system with logistic source.Commun. Partial Differ. Equations 32 (2007), 849-877. Zbl 1121.37068, MR 2334836, 10.1080/03605300701319003
Reference: [18] Viglialoro, G.: Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source.J. Math. Anal. Appl. 439 (2016), 197-212. Zbl 1386.35163, MR 3474358, 10.1016/j.jmaa.2016.02.069
Reference: [19] Viglialoro, G.: Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source.Nonlinear Anal., Real World Appl. 34 (2017), 520-535. Zbl 1355.35094, MR 3567976, 10.1016/j.nonrwa.2016.10.001
Reference: [20] Winkler, M.: Chemotaxis with logistic source: Very weak global solutions and their boundedness properties.J. Math. Anal. Appl. 348 (2008), 708-729. Zbl 1147.92005, MR 2445771, 10.1016/j.jmaa.2008.07.071
Reference: [21] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller- Segel model.J. Differ. Equations 248 (2010), 2889-2905. Zbl 1190.92004, MR 2644137, 10.1016/j.jde.2010.02.008
Reference: [22] Winkler, M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source.Commun. Partial Differ. Equqtions 35 (2010), 1516-1537. Zbl 1290.35139, MR 2754053, 10.1080/03605300903473426
Reference: [23] Winkler, M.: How strong singularities can be regularized by logistic degradation in the Keller-Segel system?.Ann. Mat. Pura Appl. (4) 198 (2019), 1615-1637. Zbl 1437.35004, MR 4022112, 10.1007/s10231-019-00834-z
Reference: [24] Winkler, M.: The role of superlinear damping in the construction of solutions to drift-diffusion problems with initial data in $L^1$.Adv. Nonlinear Anal. 9 (2020), 526-566. Zbl 1419.35099, MR 3969152, 10.1515/anona-2020-0013
Reference: [25] Winkler, M.: $L^1$ solutions to parabolic Keller-Segel systems involving arbitrary superlinear degradation.Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 24 (2023), 141-172. Zbl 7697296, MR 4587743, 10.2422/2036-2145.202005_016
Reference: [26] Zhang, W.: Global generalized solvability in the Keller-Segel system with singular sensitivity and arbitrary superlinear degradation.Discrete Contin. Dyn. Syst., Ser. B 28 (2023), 1267-1278. Zbl 1502.35184, MR 4509358, 10.3934/dcdsb.2022121
Reference: [27] Zhao, X.: Boundedness to a parabolic-parabolic singular chemotaxis system with logistic source.J. Differ. Equations 338 (2022), 388-414. Zbl 1497.92037, MR 4471552, 10.1016/j.jde.2022.08.003
Reference: [28] Zhao, X., Zheng, S.: Global boundedness to a chemotaxis system with singular sensitivity and logistic source.Z. Angew. Math. Phys. 68 (2017), Article ID 2, 13 pages. Zbl 1371.35151, MR 3575592, 10.1007/s00033-016-0749-5
Reference: [29] Zhao, X., Zheng, S.: Global existence and boundedness of solutions to a chemotaxis system with singular sensitivity and logistic-type source.J. Differ. Equations 267 (2019), 826-865. Zbl 1412.35177, MR 3957973, 10.1016/j.jde.2019.01.026
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo