Previous |  Up |  Next

Article

Title: Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system (English)
Author: Li, Yanjiang
Author: Yu, Zhongqing
Author: Huang, Yumei
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 1
Year: 2024
Pages: 153-175
Summary lang: English
.
Category: math
.
Summary: The self-consistent chemotaxis-fluid system $$ \begin{cases} n_t+u\cdot \nabla n =\Delta n - \nabla \cdot (n\nabla c )+\nabla \cdot (n\nabla \phi ), &x\in \Omega ,\ t>0,\\ c_t +u\cdot \nabla c=\Delta c -nc,\quad &x\in \Omega ,\ t>0,\\ u_t+\kappa (u\cdot \nabla ) u+\nabla P=\Delta u - n\nabla \phi +n \nabla c,\qquad &x\in \Omega ,\ t>0,\\ \nabla \cdot u=0,\quad &x\in \Omega ,\ t>0, \end{cases} $$ is considered under no-flux boundary conditions for $n, c$ and the Dirichlet boundary condition for $u$ on a bounded smooth domain $ \Omega \subset \mathbb {R}^N$ $(N=2,3)$, $\kappa \in \lbrace 0,1 \rbrace $. The existence of global bounded classical solutions is proved under a smallness assumption on $\|c_{0}\|_{L^{\infty }(\Omega )}$. \endgraf Both the effect of gravity (potential force) on cells and the effect of the chemotactic force on fluid are considered here, and thus the coupling is stronger than the most studied chemotaxis-fluid systems. The literature on self-consistent chemotaxis-fluid systems of this type so far concentrates on the nonlinear cell diffusion as an additional dissipative mechanism. To the best of our knowledge, this is the first result on the boundedness of a self-consistent chemotaxis-fluid system with linear cell diffusion. (English)
Keyword: chemotaxis
Keyword: Navier-Stokes system
Keyword: self-consistent
Keyword: global existence
Keyword: boundedness
MSC: 35K55
MSC: 35Q35
MSC: 35Q92
MSC: 92C17
DOI: 10.21136/CMJ.2023.0570-22
.
Date available: 2024-03-13T10:06:23Z
Last updated: 2024-03-18
Stable URL: http://hdl.handle.net/10338.dmlcz/152273
.
Reference: [1] Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues.Math. Models Methods Appl. Sci. 25 (2015), 1663-1763. Zbl 1326.35397, MR 3351175, 10.1142/S021820251550044X
Reference: [2] Bellomo, N., Outada, N., Soler, J., Tao, Y., Winkler, M.: Chemotaxis and cross-diffusion models in complex environments: Models and analytic problems toward a multiscale vision.Math. Models Methods Appl. Sci. 32 (2022), 713-792. Zbl 1497.35039, MR 4421216, 10.1142/S0218202522500166
Reference: [3] Cao, X.: Global classical solutions in chemotaxis(-Navier)-Stokes system with rotational flux term.J. Differ. Equations 261 (2016), 6883-6914. Zbl 1352.35092, MR 3562314, 10.1016/j.jde.2016.09.007
Reference: [4] Carrillo, J. A., Peng, Y., Xiang, Z.: Global existence and decay rates to self-consistent chemotaxis-fluid system.Available at https://arxiv.org/abs/2302.03274 (2023), 36 pages. MR 4671518
Reference: [5] Chae, M., Kang, K., Lee, J.: Existence of smooth solutions to coupled chemotaxis-fluid equations.Discrete Contin. Dyn. Syst. 33 (2013), 2271-2297. Zbl 1277.35276, MR 3007686, 10.3934/dcds.2013.33.2271
Reference: [6] Chae, M., Kang, K., Lee, J.: Global existence and temporal decay in Keller-Segel models coupled to fluid equations.Commun. Partial Differ. Equations 39 (2014), 1205-1235. Zbl 1304.35481, MR 3208807, 10.1080/03605302.2013.852224
Reference: [7] Francesco, M. Di, Lorz, A., Markowich, P. A.: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior.Discrete Contin. Dyn. Syst. 28 (2010), 1437-1453. Zbl 1276.35103, MR 2679718, 10.3934/dcds.2010.28.1437
Reference: [8] Duan, R., Li, X., Xiang, Z.: Global existence and large time behavior for a two-dimensional chemotaxis-Navier-Stokes system.J. Differ. Equations 263 (2017), 6284-6316. Zbl 1378.35160, MR 3693175, 10.1016/j.jde.2017.07.015
Reference: [9] Duan, R., Lorz, A., Markowich, P. A.: Global solutions to the coupled chemotaxis-fluid equations.Commun. Partial Differ. Equations 35 (2010), 1635-1673. Zbl 1275.35005, MR 2754058, 10.1080/03605302.2010.497199
Reference: [10] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I: Linearized Steady Problems.Springer Tracts in Natural Philosophy 38. Springer, Berlin (1994). Zbl 0949.35004, MR 1284205, 10.1007/978-1-4757-3866-7
Reference: [11] He, P., Wang, Y., Zhao, L.: A further study on a 3D chemotaxis-Stokes system with tensor-valued sensitivity.Appl. Math. Lett. 90 (2019), 23-29. Zbl 1410.35249, MR 3875493, 10.1016/j.aml.2018.09.019
Reference: [12] Horstmann, D.: From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I.Jahresber. Dtsch. Math.-Ver. 105 (2003), 103-165. Zbl 1071.35001, MR 2013508
Reference: [13] Ishida, S.: Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains.Discrete Contin. Dyn. Syst. 35 (2015), 3463-3482. Zbl 1308.35214, MR 3320134, 10.3934/dcds.2015.35.3463
Reference: [14] Jin, C.: Global bounded solution in three-dimensional chemotaxis-Stokes model with arbitrary porous medium slow diffusion.Available at https://arxiv.org/abs/2101.11235 (2021), 24 pages.
Reference: [15] Jin, C., Wang, Y., Yin, J.: Global solvability and stability to a nutrient-taxis model with porous medium slow diffusion.Available at https://arxiv.org/abs/1804.03964 (2018), 35 pages. MR 4635735
Reference: [16] Keller, E. F., Segel, L. A.: Initiation of slime mold aggregation viewed as an instability.J. Theor. Biol. 26 (1970), 399-415. Zbl 1170.92306, MR 3925816, 10.1016/0022-5193(70)90092-5
Reference: [17] Kozono, H., Yanagisawa, T.: Leray's problem on the stationary Navier-Stokes equations with inhomogeneous boundary data.Math. Z. 262 (2009), 27-39. Zbl 1169.35045, MR 2491599, 10.1007/s00209-008-0361-2
Reference: [18] Li, X., Wang, Y., Xiang, Z.: Global existence and boundedness in a 2D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux.Commun. Math. Sci. 14 (2016), 1889-1910. Zbl 1351.35073, MR 3549354, 10.4310/CMS.2016.v14.n7.a5
Reference: [19] Liu, J.-G., Lorz, A.: A coupled chemotaxis-fluid model: Global existence.Ann. Inst. H. Poincaré, Anal. Non Linéaire 28 (2011), 643-652. Zbl 1236.92013, MR 2838394, 10.1016/J.ANIHPC.2011.04.005
Reference: [20] Lorz, A.: Coupled chemotaxis fluid model.Math. Models Methods Appl. Sci. 20 (2010), 987-1004. Zbl 1191.92004, MR 2659745, 10.1142/S0218202510004507
Reference: [21] Patlak, C. S.: Random walk with persistence and external bias.Bull. Math. Biophys. 15 (1953), 311-338. Zbl 1296.82044, MR 0081586, 10.1007/BF02476407
Reference: [22] Peng, Y., Xiang, Z.: Global existence and boundedness in a 3D Keller-Segel-Stokes system with nonlinear diffusion and rotational flux.Z. Angew. Math. Phys. 68 (2017), Article ID 68, 26 pages. Zbl 1386.35189, MR 3654908, 10.1007/s00033-017-0816-6
Reference: [23] Tan, Z., Zhang, X.: Decay estimates of the coupled chemotaxis-fluid equations in $\Bbb{R}^3$.J. Math. Anal. Appl. 410 (2014), 27-38. Zbl 1333.92015, MR 3109817, 10.1016/j.jmaa.2013.08.008
Reference: [24] Tao, Y.: Boundedness in a chemotaxis model with oxygen consumption by bacteria.J. Math. Anal. Appl. 381 (2011), 521-529. Zbl 1225.35118, MR 2802089, 10.1016/j.jmaa.2011.02.041
Reference: [25] Tao, Y., Winkler, M.: Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion.Discrete Contin. Dyn. Syst. 32 (2012), 1901-1914. Zbl 1276.35105, MR 2871341, 10.3934/dcds.2012.32.1901
Reference: [26] Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C. W., Kessler, J. O., Goldstein, R. E.: Bacterial swimming and oxygen transport near contact lines.Proc. Natl. Acad. Sci. USA 102 (2005), 2277-2282. Zbl 1277.35332, 10.1073/pnas.0406724102
Reference: [27] Wang, Y.: Global solvability in a two-dimensional self-consistent chemotaxis-Navier- Stokes system.Discrete Contin. Dyn. Syst., Ser. S 13 (2020), 329-349. Zbl 1442.35481, MR 4043697, 10.3934/dcdss.2020019
Reference: [28] Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity.Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 18 (2018), 421-466. Zbl 1395.92024, MR 3801284, 10.2422/2036-2145.201603_004
Reference: [29] Wang, Y., Winkler, M., Xiang, Z.: The small-convection limit in a two-dimensional chemotaxis-Navier-Stokes system.Math. Z. 289 (2018), 71-108. Zbl 1397.35322, MR 3803783, 10.1007/s00209-017-1944-6
Reference: [30] Wang, Y., Zhao, L.: A 3D self-consistent chemotaxis-fluid system with nonlinear diffusion.J. Differ. Equations 269 (2020), 148-179. Zbl 1436.35238, MR 4081519, 10.1016/j.jde.2019.12.002
Reference: [31] Winkler, M.: Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity.Math. Nachr. 283 (2010), 1664-1673. Zbl 1205.35037, MR 2759803, 10.1002/mana.200810838
Reference: [32] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller- Segel model.J. Differ. Equations 248 (2010), 2889-2905. Zbl 1190.92004, MR 2644137, 10.1016/j.jde.2010.02.008
Reference: [33] Winkler, M.: Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops.Commun. Partial Differ. Equations 37 (2012), 319-351. Zbl 1236.35192, MR 2876834, 10.1080/03605302.2011.591865
Reference: [34] Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier-Stokes system.Arch. Ration. Mech. Anal. 211 (2014), 455-487. Zbl 1293.35220, MR 3149063, 10.1007/s00205-013-0678-9
Reference: [35] Winkler, M.: Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity.Calc. Var. Partial Differ. Equ. 54 (2015), 3789-3828. Zbl 1333.35104, MR 3426095, 10.1007/s00526-015-0922-2
Reference: [36] Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system.Ann. Inst. H. Poincaré, Anal. Non Linéaire 33 (2016), 1329-1352. Zbl 1351.35239, MR 3542616, 10.1016/J.ANIHPC.2015.05.002
Reference: [37] Winkler, M.: How far do chemotaxis-driven forces influence regularity in the Navier- Stokes system?.Trans. Am. Math. Soc. 369 (2017), 3067-3125. Zbl 1356.35071, MR 3605965, 10.1090/tran/6733
Reference: [38] Winkler, M.: Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement.J. Differ. Equations 264 (2018), 6109-6151. Zbl 1395.35038, MR 3770046, 10.1016/j.jde.2018.01.027
Reference: [39] Winkler, M.: A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization.J. Funct. Anal. 276 (2019), 1339-1401. Zbl 1408.35132, MR 3912779, 10.1016/j.jfa.2018.12.009
Reference: [40] Yu, P.: Global existence and boundedness in a chemotaxis-Stokes system with arbitrary porous medium diffusion.Math. Methods Appl. Sci. 43 (2020), 639-657. Zbl 1439.35254, MR 4056454, 10.1002/mma.5920
Reference: [41] Zhang, Q., Li, Y.: Convergence rates of solutions for a two-dimensional chemotaxis- Navier-Stokes system.Discrete Contin. Dyn. Syst., Ser. B 20 (2015), 2751-2759. Zbl 1334.35104, MR 3423254, 10.3934/dcdsb.2015.20.2751
Reference: [42] Zhang, Q., Li, Y.: Global weak solutions for the three-dimensional chemotaxis-Navier- Stokes system with nonlinear diffusion.J. Differ. Equations 259 (2015), 3730-3754. Zbl 1320.35352, MR 3369260, 10.1016/j.jde.2015.05.012
Reference: [43] Zhang, Q., Zheng, X.: Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations.SIAM J. Math. Anal. 46 (2014), 3078-3105. Zbl 1444.35011, MR 3252810, 10.1137/130936920
Reference: [44] Zheng, J.: Global existence and boundedness in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity.Ann. Mat. Pura Appl. (4) 201 (2022), 243-288. Zbl 1485.35119, MR 4375009, 10.1007/s10231-021-01115-4
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo