Title: | Lie perfect, Lie central extension and generalization of nilpotency in multiplicative Lie algebras (English) |
Author: | Singh, Dev Karan |
Author: | Pandey, Mani Shankar |
Author: | Kumar, Shiv Datt |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 1 |
Year: | 2024 |
Pages: | 283-299 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | This paper aims to introduce and explore the concept of Lie perfect multiplicative Lie algebras, with a particular focus on their connections to the central extension theory of multiplicative Lie algebras. The primary objective is to establish and provide proof for a range of results derived from Lie perfect multiplicative Lie algebras. Furthermore, the study extends the notion of Lie nilpotency by introducing and examining the concept of local nilpotency within multiplicative Lie algebras. The paper presents an innovative adaptation of the Hirsch-Plotkin theorem specifically tailored for multiplicative Lie algebras.\looseness -1 (English) |
Keyword: | multiplicative Lie algebra |
Keyword: | commutator |
Keyword: | nilpotent group |
Keyword: | perfect group |
Keyword: | central extensions |
MSC: | 17A99 |
MSC: | 19G24 |
MSC: | 20A99 |
MSC: | 20F19 |
DOI: | 10.21136/CMJ.2024.0261-23 |
. | |
Date available: | 2024-03-13T10:10:21Z |
Last updated: | 2024-03-18 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152280 |
. | |
Reference: | [1] Bak, A., Donadze, G., Inassaridze, N., Ladra, M.: Homology of multiplicative Lie rings.J. Pure Appl. Algebra 208 (2007), 761-777. Zbl 1138.18007, MR 2277710, 10.1016/j.jpaa.2006.03.029 |
Reference: | [2] Donadze, G., Inassaridze, N., Ladra, M., Vieites, A. M.: Exact sequences in homology of multiplicative Lie rings and a new version of Stallings' theorem.J. Pure Appl. Algebra 222 (2018), 1786-1802. Zbl 1408.18031, MR 3763283, 10.1016/j.jpaa.2017.08.006 |
Reference: | [3] Donadze, G., Ladra, M.: More on five commutator identities.J. Homotopy Relat. Struct. 2 (2007), 45-55. Zbl 1184.20033, MR 2326932 |
Reference: | [4] Ellis, G. J.: On five well-known commutator identities.J. Aust. Math. Soc., Ser. A 54 (1993), 1-19. Zbl 0777.20001, MR 1195654, 10.1017/S1446788700036934 |
Reference: | [5] Lal, R.: Algebra 2. Linear Algebra, Galois Theory, Representation Theory, Group Extensions and Schur Multiplier.Infosys Science Foundation Series. Springer, Singapore (2017). Zbl 1369.00003, MR 3642661, 10.1007/978-981-10-4256-0 |
Reference: | [6] Lal, R., Upadhyay, S. K.: Multiplicative Lie algebras and Schur multiplier.J. Pure Appl. Algebra 223 (2019), 3695-3721. Zbl 1473.17050, MR 3944451, 10.1016/j.jpaa.2018.12.003 |
Reference: | [7] Pandey, M. S., Lal, R., Upadhyay, S. K.: Lie commutator, solvability and nilpotency in multiplicative Lie algebras.J. Algebra Appl. 20 (2021), Article ID 2150138, 11 pages. Zbl 07411748, MR 4297322, 10.1142/S0219498821501383 |
Reference: | [8] Pandey, M. S., Upadhyay, S. K.: Theory of extensions of multiplicative Lie algebras.J. Lie Theory 31 (2021), 637-658. Zbl 1486.17033, MR 4257164 |
Reference: | [9] Pandey, M. S., Upadhyay, S. K.: Classification of multiplicative Lie algebra structures on a finite group.Colloq. Math. 168 (2022), 25-34. Zbl 1514.17025, MR 4378560, 10.4064/cm8397-12-2020 |
Reference: | [10] Point, F., Wantiez, P.: Nilpotency criteria for multiplicative Lie algebras.J. Pure Appl. Algebra 111 (1996), 229-243. Zbl 0863.20015, MR 1394354, 10.1016/0022-4049(95)00115-8 |
Reference: | [11] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80. Springer, New York (1996). Zbl 0836.20001, MR 1357169, 10.1007/978-1-4419-8594-1 |
Reference: | [12] Walls, G. L.: Multiplicative Lie algebras.Turk. J. Math. 43 (2019), 2888-2897. Zbl 1429.20028, MR 4038386, 10.3906/mat-1904-55 |
. |
Fulltext not available (moving wall 24 months)