Previous |  Up |  Next

Article

Title: Representation functions for binary linear forms (English)
Author: Xue, Fang-Gang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 1
Year: 2024
Pages: 301-304
Summary lang: English
.
Category: math
.
Summary: Let $\mathbb {Z}$ be the set of integers, $\mathbb {N}_0$ the set of nonnegative integers and $F(x_1,x_2)=u_1x_1+u_2x_2$ be a binary linear form whose coefficients $u_1$, $u_2$ are nonzero, relatively prime integers such that $u_1u_2\neq \pm 1$ and $u_1u_2\neq -2$. Let $f\colon \mathbb {Z}\rightarrow \mathbb {N}_0\cup \{\infty \}$ be any function such that the set $f^{-1}(0)$ has asymptotic density zero. In 2007, M. B. Nathanson (2007) proved that there exists a set $A$ of integers such that $r_{A,F}(n)=f(n)$ for all integers $n$, where $r_{A,F}(n)=|\{(a,a') \colon n=u_1a+u_2a' \colon a,a'\in A\}|$. We add the structure of difference for the binary linear form $F(x_1,x_2)$. (English)
Keyword: representation function
Keyword: binary linear form
Keyword: density
MSC: 11B13
MSC: 11B34
DOI: 10.21136/CMJ.2024.0326-23
.
Date available: 2024-03-13T10:10:52Z
Last updated: 2024-03-18
Stable URL: http://hdl.handle.net/10338.dmlcz/152281
.
Reference: [1] Fang, J.-H.: Representation functions avoiding integers with density zero.Eur. J. Comb. 102 (2022), Article ID 103490, 7 pages. Zbl 1508.11015, MR 4350493, 10.1016/j.ejc.2021.103490
Reference: [2] Nathanson, M. B.: Representation functions of bases for binary linear forms.Funct. Approximatio, Comment. Math. 37 (2007), 341-350. Zbl 1146.11007, MR 2363831, 10.7169/facm/1229619658
Reference: [3] Xiong, R., Tang, M.: Unique representation bi-basis for the integers.Bull. Aust. Math. Soc. 89 (2014), 460-465 \99999DOI99999 10.1017/S0004972713000762 . Zbl 1301.11012, MR 3254755, 10.1017/S0004972713000762
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo