Previous |  Up |  Next

Article

Title: Entire function sharing two polynomials with its $k$th derivative (English)
Author: Majumder, Sujoy
Author: Sarkar, Nabadwip
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 1
Year: 2024
Pages: 87-103
Summary lang: English
.
Category: math
.
Summary: We investigate the uniqueness problem of entire functions that share two polynomials with their $k$th derivatives and obtain some results which improve and generalize the recent result due to Lü and Yi (2011). Also, we exhibit some examples to show that the conditions of our results are the best possible. (English)
Keyword: meromorphic function
Keyword: derivative
Keyword: Nevanlinna theory
Keyword: uniqueness
MSC: 30D35
MSC: 30D45
DOI: 10.21136/MB.2023.0017-22
.
Date available: 2024-03-13T10:21:01Z
Last updated: 2024-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152295
.
Reference: [1] Brück, R.: On entire functions which share one value CM with their first derivative.Result. Math. 30 (1996), 21-24. Zbl 0861.30032, MR 1402421, 10.1007/BF03322176
Reference: [2] Hayman, W. K.: Meromorphic Functions.Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). Zbl 0115.06203, MR 0164038
Reference: [3] Lahiri, I.: Weighted value sharing and uniqueness of meromorphic functions.Complex Variables, Theory Appl. 46 (2001), 241-253. Zbl 1025.30027, MR 1869738, 10.1080/17476930108815411
Reference: [4] Laine, I.: Nevanlinna Theory and Complex Differential Equations.de Gruyter Studies in Mathematics 15. Walter de Gruyter, Berlin (1993). Zbl 0784.30002, MR 1207139, 10.1515/9783110863147
Reference: [5] Li, J., Yi, H.: Normal families and uniqueness of entire functions and their derivatives.Arch. Math. 87 (2006), 52-59. Zbl 1104.30019, MR 2246406, 10.1007/s00013-005-1619-0
Reference: [6] Lü, F., Xu, J., Chen, A.: Entire functions sharing polynomials with their first derivatives.Arch. Math. 92 (2009), 593-601. Zbl 1179.30027, MR 2516165, 10.1007/s00013-009-3075-8
Reference: [7] Lü, F., Yi, H.: The Brück conjecture and entire functions sharing polynomials with their $k$-th derivatives.J. Korean Math. Soc. 48 (2011), 499-512. Zbl 1232.30024, MR 2815888, 10.4134/JKMS.2011.48.3.499
Reference: [8] Mues, E., Steinmetz, N.: Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen.Manuscr. Math. 29 (1979), 195-206 German. Zbl 0416.30028, MR 0545041, 10.1007/BF01303627
Reference: [9] Rubel, L. A., Yang, C.-C.: Values shared by an entire function and its derivative.Complex Analysis Lecture Notes in Mathematics 599. Springer, Berlin (1977), 101-103. Zbl 0362.30026, MR 0460640, 10.1007/BFb0096830
Reference: [10] Schiff, J. L.: Normal Families.Universitext. Springer, New York (1993). Zbl 0770.30002, MR 1211641, 10.1007/978-1-4612-0907-2
Reference: [11] Yang, C.-C., Yi, H.-X.: Uniqueness Theory of Meromorphic Functions.Mathematics and Its Applications (Dordrecht) 557. Kluwer Academic, Dordrecht (2003). Zbl 1070.30011, MR 2105668, 10.1007/978-94-017-3626-8
Reference: [12] Yang, L.-Z., Zhang, J.-L.: Non-existence of meromorphic solutions of Fermat type functional equation.Aequationes Math. 76 (2008), 140-150. Zbl 1161.30022, MR 2443466, 10.1007/s00010-007-2913-7
Reference: [13] Zhang, J.-L., Yang, L.-Z.: A power of an entire function sharing one value with its derivative.Comput. Math. Appl. 60 (2010), 2153-2160. Zbl 1205.30033, MR 2719737, 10.1016/j.camwa.2010.08.001
.

Files

Files Size Format View
MathBohem_149-2024-1_8.pdf 267.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo