Previous |  Up |  Next

Article

Title: Metric enrichment, finite generation, and the path coreflection (English)
Author: Chirvasitu, Alexandru
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 60
Issue: 2
Year: 2024
Pages: 61-99
Summary lang: English
.
Category: math
.
Summary: We prove a number of results involving categories enriched over CMet, the category of complete metric spaces with possibly infinite distances. The category CPMet of path complete metric spaces is locally $\aleph _1$-presentable, closed monoidal, and coreflective in CMet. We also prove that the category CCMet of convex complete metric spaces is not closed monoidal and characterize the isometry-$\aleph _0$-generated objects in CMet, CPMet and CCMet, answering questions by Di Liberti and Rosický. Other results include the automatic completeness of a colimit of a diagram of bi-Lipschitz morphisms between complete metric spaces and a characterization of those pairs (metric space, unital $C^*$-algebra) that have a tensor product in the CMet-enriched category of unital $C^*$-algebras. (English)
Keyword: complete metric space
Keyword: path metric
Keyword: intrinsic metric
Keyword: gluing
Keyword: convex
Keyword: monoidal closed
Keyword: enriched
Keyword: tensored
Keyword: locally presentable
Keyword: colimit
Keyword: internal hom
MSC: 18A30
MSC: 18C35
MSC: 18D15
MSC: 18D20
MSC: 46L05
MSC: 46L09
MSC: 51F30
MSC: 54E40
MSC: 54E50
idZBL: Zbl 07830506
idMR: MR4729650
DOI: 10.5817/AM2024-2-61
.
Date available: 2024-04-04T12:02:35Z
Last updated: 2024-08-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152306
.
Reference: [1] Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and concrete categories: the joy of cats.Repr. Theory Appl. Categ. 17 (2006), 1–507, Reprint of the 1990 original [Wiley, New York; MR1051419]. MR 2240597
Reference: [2] Adámek, J., Rosický, J.: Locally presentable and accessible categories.London Math. Soc. Lecture Note Ser., vol. 189, Cambridge University Press, Cambridge, 1994. MR 1294136
Reference: [3] Adámek, J., Rosický, J.: Approximate injectivity and smallness in metric-enriched categories.J. Pure Appl. Algebra 226 (6) (2022), 30 pp., Paper No. 106974. MR 4343847
Reference: [4] Awodey, S.: Category theory.second ed., Oxford Logic Guides, vol. 52, Oxford University Press, Oxford, 2010. MR 2668552
Reference: [5] Blackadar, B.: Operator algebras.Encyclopaedia of Mathematical Sciences, vol. 122, Springer-Verlag, Berlin, 2006. MR 2188261
Reference: [6] Blumenthal, L.M.: Theory and applications of distance geometry.Chelsea Publishing Co., New York, 1970. MR 0268781
Reference: [7] Bollobás, B.: Modern graph theory.Graduate Texts in Mathematics, vol. 184, Springer-Verlag, New York, 1998. MR 1633290
Reference: [8] Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry.Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001. Zbl 0981.51016, MR 1835418
Reference: [9] Chirvasitu, A., Ko, J.: Monadic forgetful functors and (non-)presentability for C$^*$- and W$^*$-algebras.http://arxiv.org/abs/2203.12087v2, 2022. MR 4478368
Reference: [10] Di Liberti, I., Rosický, J.: Enriched locally generated categories.Theory Appl. Categ. 38 (2022), 661–683, Paper No. 17. MR 4403281
Reference: [11] Diestel, R.: Graph theory.Grad. Texts in Math., vol. 173, Springer, Berlin, fifth ed., 2018. MR 3644391
Reference: [12] Garbulińska-Wȩgrzyn, J., Kubiś, W.: A universal operator on the Gurariĭ space.J. Operator Theory 73 (1) (2015), 143–158. MR 3322761, 10.7900/jot.2013oct09.1999
Reference: [13] Goebel, K., Kirk, W.A.: Topics in metric fixed point theory.Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990. Zbl 0708.47031, MR 1074005
Reference: [14] Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces.english ed., Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007, Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates. MR 2307192
Reference: [15] Halmos, P.R.: A Hilbert space problem book.Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, second ed., 1982. MR 0675952
Reference: [16] Kelly, G.M.: Structures defined by finite limits in the enriched context, I.Cah. Topol. Géom. Dffér. Catég. 23 (1) (1982), 3–42, Third Colloquium on Categories, Part VI (Amiens, 1980. MR 0648793
Reference: [17] Kelly, G.M.: Basic concepts of enriched category theory.Repr. Theory Appl. Categ., vol. 10, Cambridge Univ. Press, Cambridge, 2005, pp. vi+137. Zbl 1086.18001, MR 2177301
Reference: [18] Khamsi, M.A., Kirk, W.A.: An introduction to metric spaces and fixed point theory.Pure Appl. Math. (N. Y.), Wiley-Interscience, New York, 2001. MR 1818603
Reference: [19] Kubiś, W.: Metric-enriched categories and approximate Fraïssé limits.2012, http://arxiv.org/abs/1210.6506v3. MR 4369354
Reference: [20] Lupini, M.: Fraïssé limits in functional analysis.Adv. Math. 338 (2018), 93–174. MR 3861702, 10.1016/j.aim.2018.08.012
Reference: [21] Mac Lane, S.: Categories for the working mathematician.Grad. Texts in Math., Springer-Verlag, New York, second ed., 1998. MR 1712872
Reference: [22] Menger, K.: Untersuchungen über allgemeine Metrik.Math. Ann. 100 (1) (1928), 75–163. MR 1512479, 10.1007/BF01448840
Reference: [23] Munkres, J.R.: Topology.Prentice Hall, Inc., Upper Saddle River, NJ, 2000, Second edition of [MR0464128]. MR 3728284
Reference: [24] Perdigão do Carmo, M.: Mathematics: Theory & Applications.Birkhäuser Boston, Inc., Boston, MA, 1992, Translated from the second Portuguese edition by Francis Flaherty. MR 1138207
Reference: [25] Rosický, J., Tholen, W.: Approximate injectivity.Appl. Categ. Structures 26 (4) (2018), 699–716. MR 3824920, 10.1007/s10485-017-9510-2
Reference: [26] Wegge-Olsen, N.E.: $K$-theory and $C^*$-algebras.Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993, A friendly approach. MR 1222415
.

Files

Files Size Format View
ArchMathRetro_060-2024-2_1.pdf 692.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo