Previous |  Up |  Next

Article

Title: On Lie semiheaps and ternary principal bundles (English)
Author: Bruce, Andrew James
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 60
Issue: 2
Year: 2024
Pages: 101-124
Summary lang: English
.
Category: math
.
Summary: We introduce the notion of a Lie semiheap as a smooth manifold equipped with a para-associative ternary product. For a particular class of Lie semiheaps we establish the existence of left-invariant vector fields. Furthermore, we show how such manifolds are related to Lie groups and establish the analogue of principal bundles in this ternary setting. In particular, we generalise the well-known ‘heapification’ functor to the ambience of Lie groups and principal bundles. (English)
Keyword: heaps
Keyword: semiheaps
Keyword: principal bundles
Keyword: group actions
Keyword: generalised associativity
MSC: 20N10
MSC: 22E15
idZBL: Zbl 07830507
idMR: MR4729651
DOI: 10.5817/AM2024-2-101
.
Date available: 2024-04-04T12:05:15Z
Last updated: 2024-08-02
Stable URL: http://hdl.handle.net/10338.dmlcz/152308
.
Reference: [1] Baer, R.: Zur Einführung des Scharbegriffs.J. Reine Angew. Math. 160 (1929), 199–207. MR 1581184
Reference: [2] Borowiec, A., Dudek, W.A., Duplij, S.: Basic concepts of ternary Hopf algebras.J. Kharkov National Univ., ser. Nuclei, Particles and Fields, vol. 529 3 (15) (2001), 21–29.
Reference: [3] Breaz, S., Brzeziński, T., Rybołowicz, B., Saracco, P.: Heaps of modules and affine spaces.Ann. Mat. Pur. Appl. 203 (2024), 403–405. MR 4685735, 10.1007/s10231-023-01369-0
Reference: [4] Bruce, A.J.: Semiheaps and Ternary Algebras in Quantum Mechanics Revisited,.Universe 8 (1) (2022), 56. 10.3390/universe8010056
Reference: [5] Brzeziński, T.: Towards semi-trusses.Rev. Roumaine Math. Pures Appl. 63 (2) (2018), 75–89. MR 3812011
Reference: [6] Brzeziński, T.: Trusses: between braces and rings.Trans. Amer. Math. Soc. 372 (6) (2019), 4149–4176. MR 4009388, 10.1090/tran/7705
Reference: [7] Brzeziński, T.: Trusses: paragons, ideals and modules.J. Pure Appl. Algebra 224 (6) (2020), 39 pp., 106258. MR 4048518, 10.1016/j.jpaa.2019.106258
Reference: [8] Brzeziński, T.: Lie trusses and heaps of Lie affebras.PoS 406 (2022), 12 pp., 307.
Reference: [9] Brzeziński, T.: The algebra of elliptic curves.Proc. Edinb. Math. Soc. 66 (2) (2023), 548–556. MR 4618086, 10.1017/S0013091523000275
Reference: [10] Brzeziński, T., Rybołowicz, B.: Modules over trusses vs modules over rings: direct sums and free modules.Algebr. Represent. Theory 25 (1) (2022), 1–23. MR 4368576, 10.1007/s10468-020-10008-8
Reference: [11] Brzeziński, T., Wisbauer, R.: Corings and comodules.London Math. Soc. Lecture Note Ser., vol. 309, Cambridge University Press, Cambridge, 2003, pp. xii+476 pp. MR 2012570
Reference: [12] Grabowska, K., Grabowski, J., Urbański, P.: Lie brackets on affine bundles.Ann. Global Anal.Geom. 24 (2003), 101–130. MR 1990111, 10.1023/A:1024457728027
Reference: [13] Grabowski, J.: An introduction to loopoids.Comment. Math. Univ. Carolin. 57 (2016), 515–526. MR 3583303
Reference: [14] Grabowski, J., Z., Ravanpak: Nonassociative analogs of Lie groupoids.Differential Geom. Appl. 82 (2022), 32 pp., Paper No. 101887. MR 4404504, 10.1016/j.difgeo.2022.101887
Reference: [15] Hollings, C.D., Lawson, M.V.: Wagner’s theory of generalised heaps.Springer, Cham, 2017, xv+189 pp., ISBN: 978-3-319-63620-7. MR 3729305
Reference: [16] Kerner, R.: Ternary and non-associative structures.Int. J. Geom. Methods Mod. Phys. 5 (2008), 1265–1294. MR 2484553, 10.1142/S0219887808003326
Reference: [17] Kerner, R.: Ternary generalizations of graded algebras with some physical applications.Rev. Roumaine Math. Pures Appl 63 (2018), 107–141. MR 3812013
Reference: [18] Kolář, I., Michor, P.W., Slovák, J.: Natural operations in differential geometry.Springer-Verlag, Berlin, 1993. Zbl 0782.53013, MR 1202431
Reference: [19] Konstantinova, L.I.: Semiheap bundles.Saratov Gos. Univ. Saratov No. 4 (1978), 46–54. MR 0538067
Reference: [20] Kontsevich, M.: Operads and motives in deformation quantization.Lett. Math. Phys. 48 (1999), 35–72. MR 1718044, 10.1023/A:1007555725247
Reference: [21] Kosmann-Schwarzbach, Y.: Multiplicativity, from Lie groups to generalized geometry.Banach Center Publ. 110 (2016), 131–166. MR 3642395
Reference: [22] Mac Lane, S.: Categories for the working mathematician.Grad. Texts in Math., vol. 5, New York, NY: Springer, 2nd ed., 1998, pp. xii+314 pp. MR 1712872
Reference: [23] Nakahara, M.: Geometry, topology and physics.2nd ed., Graduate Stud. Ser. Phys. Bristol: Institute of Physics (IOP), 2003, xxii+ 573 pp. MR 2001829
Reference: [24] Prüfer, H.: Theorie der Abelschen Gruppen.Math. Z. 20 (1) (1924), 165–171. MR 1544670
Reference: [25] Saito, M., E., Zappala: Braided Frobenius algebras from certain Hopf algebras.J. Algebra Appl. 22 (1) (2023), 23 pp., Paper No. 2350012. MR 4526173
Reference: [26] Škoda, Z.: Quantum heaps, cops and heapy categories.Math. Commun. 12 (1) (2007), 1–9. MR 2420028
Reference: [27] Trèves, F.: Topological Vector Spaces, Distributions and Kernels.Dover Publications, Inc., Mineola, NY, 2006, xvi+565 pp., ISBN: 0-486-45352-9. MR 2296978
.

Files

Files Size Format View
ArchMathRetro_060-2024-2_2.pdf 542.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo