Previous |  Up |  Next

Article

Title: Lipschitz constants for a hyperbolic type metric under Möbius transformations (English)
Author: Wu, Yinping
Author: Wang, Gendi
Author: Jia, Gaili
Author: Zhang, Xiaohui
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 2
Year: 2024
Pages: 445-460
Summary lang: English
.
Category: math
.
Summary: Let $D$ be a nonempty open set in a metric space $(X,d)$ with $\partial D\neq \emptyset $. Define $$ h_{D,c}(x,y)=\log \bigg (1+c\frac {d(x,y)}{\sqrt {d_D(x)d_D(y)}}\bigg ), $$ where $d_D(x)=d(x,\partial D)$ is the distance from $x$ to the boundary of $D$. For every $c\geq 2$, $h_{D,c}$ is a metric. We study the sharp Lipschitz constants for the metric $h_{D,c}$ under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball. (English)
Keyword: Lipschitz constant
Keyword: hyperbolic type metric
Keyword: Möbius transformation
MSC: 30C65
MSC: 51M10
DOI: 10.21136/CMJ.2024.0366-23
.
Date available: 2024-07-10T14:53:03Z
Last updated: 2024-07-15
Stable URL: http://hdl.handle.net/10338.dmlcz/152452
.
Reference: [1] Ahlfors, L. V.: Conformal Invariants: Topics in Geometric Function Theory.AMS Chelsea Publishing, Providence (2010). Zbl 1211.30002, MR 2730573, 10.1090/chel/371
Reference: [2] Anderson, G. D., Vamanamurthy, M. K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps.Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, Chichester (1997). Zbl 0885.30012, MR 1462077
Reference: [3] Beardon, A. F.: The Geometry of Discrete Groups.Graduate Texts in Mathematics 91. Springer, New York (1983). Zbl 0528.30001, MR 0698777, 10.1007/978-1-4612-1146-4
Reference: [4] Beardon, A. F., Minda, D.: The hyperbolic metric and geometric function theory.Proceedings of the International Workshop on Quasiconformal Mappings and Their Applications Narosa Publishing House, New Delhi (2007), 9-56. Zbl 1208.30001, MR 2492498
Reference: [5] Chen, J., Hariri, P., Klén, R., Vuorinen, M.: Lipschitz conditions, triangular ratio metric, and quasiconformal mappings.Ann. Acad. Sci. Fenn., Math. 40 (2015), 683-709. Zbl 1374.30069, MR 3409699, 10.5186/aasfm.2015.4039
Reference: [6] Dovgoshey, O., Hariri, P., Vuorinen, M.: Comparison theorems for hyperbolic type metrics.Complex Var. Elliptic Equ. 61 (2016), 1464-1480. Zbl 1354.54026, MR 3513361, 10.1080/17476933.2016.1182517
Reference: [7] Gehring, F. W., Hag, K.: The Apollonian metric and quasiconformal mappings.Proceedings of the First Ahlfors-Bers Colloquium, State University of New York, Stony Brook, NY, USA, November 6-8, 1998 Contemporary Mathematics 256. AMS, Providence (2000), (143-163). Zbl 0964.30024, MR 1759676, 10.1090/conm/256
Reference: [8] Gehring, F. W., Hag, K.: The Ubiquitous Quasidisk.Mathematical Surveys and Monographs 184. AMS, Providence (2012). Zbl 1267.30003, MR 2933660, 10.1090/surv/184
Reference: [9] Gehring, F. W., Osgood, B. G.: Uniform domains and the quasi-hyperbolic metric.J. Anal. Math. 36 (1979), 50-74. Zbl 0449.30012, MR 0581801, 10.1007/BF02798768
Reference: [10] Gehring, F. W., Palka, B. P.: Quasiconformally homogeneous domains.J. Anal. Math. 30 (1976), 172-199. Zbl 0349.30019, MR 0437753, 10.1007/BF02786713
Reference: [11] Hariri, P., Klén, R., Vuorinen, M.: Conformally Invariant Metrics and Quasiconformal Mappings.Springer Monographs in Mathematics. Springer, Cham (2020). Zbl 1450.30003, MR 4179585, 10.1007/978-3-030-32068-3
Reference: [12] Hariri, P., Vuorinen, M., Wang, G.: Some remarks on the visual angle metric.Comput. Methods Funct. Theory 16 (2016), 187-201. Zbl 1355.30019, MR 3503350, 10.1007/s40315-015-0137-8
Reference: [13] Hariri, P., Vuorinen, M., Zhang, X.: Inequalities and bi-Lipschitz conditions for the triangular ratio metric.Rocky Mt. J. Math. 47 (2017), 1121-1148. Zbl 1376.30019, MR 3689948, 10.1216/RMJ-2017-47-4-1121
Reference: [14] Hästö, P. A.: A new weighted metric: The relative metric. I.J. Math. Anal. Appl. 274 (2002), 38-58. Zbl 1019.54011, MR 1936685, 10.1016/S0022-247X(02)00219-6
Reference: [15] Ibragimov, Z., Mohapatra, M. R., Sahoo, S. K., Zhang, X.: Geometry of the Cassinian metric and its inner metric.Bull. Malays. Math. Sci. Soc. (2) 40 (2017), 361-372. Zbl 1366.30007, MR 3592912, 10.1007/s40840-015-0246-6
Reference: [16] Jia, G., Wang, G., Zhang, X.: Geometric properties of the triangular ratio metric and related metrics.Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 4223-4237. Zbl 1476.30149, MR 4321759, 10.1007/s40840-021-01163-2
Reference: [17] Klén, R., Lindén, H., Vuorinen, M., Wang, G.: The visual angle metric and Möbius transformations.Comput. Methods Funct. Theory 14 (2014), 577-608. Zbl 1307.30082, MR 3265380, 10.1007/s40315-014-0075-x
Reference: [18] Klén, R., Mohapatra, M. R., Sahoo, S. K.: Geometric properties of the Cassinian metric.Math. Nachr. 290 (2017), 1531-1543. Zbl 1392.30005, MR 3672894, 10.1002/mana.201600117
Reference: [19] Mocanu, M.: Functional inequalities for metric-preserving functions with respect to intrinsic metrics of hyperbolic type.Symmetry 13 (2021), Article ID 2072, 21 pages. 10.3390/sym13112072
Reference: [20] Mohapatra, M. R., Sahoo, S. K.: A Gromov hyperbolic metric vs the hyperbolic and other related metrics.Comput. Methods Funct. Theory 18 (2018), 473-493. Zbl 1402.30039, MR 3844664, 10.1007/s40315-018-0233-7
Reference: [21] Nikolov, N., Andreev, L.: Estimates of the Kobayashi and quasi-hyperbolic distances.Ann. Mat. Pura Appl. (4) 196 (2017), 43-50. Zbl 1366.32006, MR 3600857, 10.1007/s10231-016-0561-z
Reference: [22] Ratcliffe, J. G.: Foundations of Hyperbolic Manifolds.Graduate Texts in Mathematics 149. Springer, New York (2006). Zbl 1106.51009, MR 2249478, 10.1007/978-0-387-47322-2
Reference: [23] Simić, S., Vuorinen, M., Wang, G.: Sharp Lipschitz constants for the distance ratio metric.Math. Scand. 116 (2015), 86-103. Zbl 1311.30004, MR 3322608, 10.7146/math.scand.a-20452
Reference: [24] Vuorinen, M.: Conformal Geometry and Quasiregular Mappings.Lecture Notes in Mathematics 1319. Springer, Berlin (1988). Zbl 0646.30025, MR 0950174, 10.1007/BFb0077904
Reference: [25] Wang, G., Xu, X., Vuorinen, M.: Remarks on the scale-invariant Cassinian metric.Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 1559-1577. Zbl 1462.30085, MR 4241324, 10.1007/s40840-020-01011-9
Reference: [26] Xu, X., Wang, G., Zhang, X.: Comparison and Möbius quasi-invariance properties of Ibragimov's metric.Comput. Methods Funct. Theory 22 (2022), 609-627. Zbl 1502.30130, MR 4473943, 10.1007/s40315-021-00414-4
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo